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1. Introduction 

Generating Function is a most powerful application in discrete mathematics and which is used to operate 
the sequences efficiently. (Carlitz, L. et al.,1969) Generating function and its characterization are presented. 
(Khoshy.T.2001) Applications of Fibonacci and Lucas numbers are exhibited. Fibonacci and Lucas identities are 
established by using exponential generating function (Church.C.A. & Marjorie Bicknell 1973). Generalized 
Mersenne numbers, properties and its generating functions and so on are investigated (Ali Boussayoud, Mourad 
Chelgham  & Souhila Boughaba et al.,2018). 

In this communication, we analyze some properties relating Mersenne and Mersenne-Lucas sequences by 
using exponential generating functions. 

Filtering of integers gives some interesting results in Number Theory. In this way, we define Mersenne 
numbers by the recurrence relation 

                            

and Mersenne-Lucas numbers by the recurrence relation 

                                   for    . 

The characteristic equation of these recurrence relations are           with          

The Binet formulas for Mersenne and Mersenne-Lucas numbers are  
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The ordinary generating functions for these sequences are 
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By using the expansion of Maclaurin series of the exponential function, we have 
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We obtain the exponential generating function as 
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2. Properties 
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3. Exponential Generating Functions for Mersenne Identities 

 The characteristic equation of Mersenne and Mersenne Lucas numbers are      +2=0, with roots 
         

          and         . 

Theorem 1. For   positive integers 
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By using Lemma, we have 
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Similarly, let  ( )            and   ( )       
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Theorem 2. For   positive integers 
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From the multiplication of series, 

 ( ) ( )  [∑
   

 

  

 

   

] [∑
(   ) 

  

 

   

] 

                    ∑ [∑(
 

 
)  (  )

   

 

   

]
  

  

 

   

 

 ∑(
 

 
)  (  )

   

 

   

 (  )      
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By using the Lemma, we have 
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Theorem 3. For   positive integers, 
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Theorem 4. For   positive integers, 
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Theorem 5. For   positive integers, 
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Theorem 6. For   positive integers, 
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By using Lemma, we have 
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Theorem 7. Let     be any positive integers 
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Theorem 8. Let     be any positive integers 
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Theorem 9. Let     be any positive integers 
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Theorem 10. Let     be any positive integers 
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Theorem 11. Let     be any positive integers then 
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Theorem 12. Let       be any positive integers then 
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