

 Turkish Journal of Computer and Mathematics Education Vol.12 No.3 (2021), 1975-1980

 Research Article

1975

The Limitations of Cross-Site Scripting Vulnerabilities Detection and Removal

Techniques

Isatou Hydara
1
, Abu Bakar Md Sultan

2
, Hazura Zulzalil

3
, Novia Admodisastro

4

1,2,3,4

Department of Software Engineering and Information System,

Faculty of Computer Science and Information Technology, Universiti Putra Malaysia

43400 UPM Serdang, Selangor, Malaysia
1
ishahydara@gmail.com

Article History: Received: 10 November 2020; Revised: 12 January 2021; Accepted: 27 January 2021;

Published online: 05 April 2021

Abstract: Web applications have become very important tools in our daily activities as we use them to share and get

information, conduct businesses, and interact with family and friends on social media through the Internet. Despite their

importance, web applications are plagued with many security vulnerabilities that enable hackers to attack them and

compromise user information and privacy. Cross-site scripting vulnerabilities are a type of injection vulnerabilities existing in

web applications. They can lead to attacks in web applications due to the lack of proper validation of input data in the

affected web pages of an application. Many approaches and techniques have been proposed to mitigate this type of

vulnerabilities. However, these solutions have some limitations and cross-site scripting vulnerabilities still remain as a major

security problem for web applications. This paper explores and presents the existing techniques for detecting and for

removing cross-site scripting vulnerabilities in web application. It gives an overview of cross-site scripting as a security issue

in web application and its different types. The advantages as well as the limitations of each techniques are highlighted and

discussed. Based on the limitations, some possible future research directions are identified, and recommendations are given as

reference for researchers interested in this topic.

Keywords: cross-site scripting, cross-site scripting attacks, cross-site scripting vulnerabilities, web application

security

1. Introduction

As technology advances, we rely on the Internet to carry out daily transactions using Desktop and mobile

web applications. Banking websites enable customers to transfer money online, pay bills, and conduct many

transactions without having to visit any bank branch. Many online stores are also available to support the E-

commerce businesses around the world. Social and other sites enable people to consume and share information

online. However, this has made web applications more complex (OWASP, 2020), resulting to a lot of security

issues affecting them including cross-site scripting (XSS). Security is addressed as an afterthought in most web

applications that are currently in used. Despite the efforts of integrating an application’s security requirements

throughout the software development lifecycle, many XSS vulnerabilities are still found in web applications. It is

reported that 80% of all websites are vulnerable to XSS (Javed & Schwenk, 2014).

XSS vulnerabilities are in the top security vulnerabilities that are in desktop web applications (OWASP,

2020) as well as mobile web applications (Kaur, Pande, Bhardwaj, Bhagat, & Gupta, 2018) and are exploited

through XSS attacks on web applications that are available online (OWASP, 2020). Hackers can inject or input

malicious code where user inputs are inserted in these applications such as providing username and password

when login to an application. If the website does not verify the user inputs or it is done incorrectly, it allows the

hacker the opportunity of exploiting for vulnerabilities and conduct malicious activities.

XSS vulnerabilities are categorized into three types, Reflected, Stored and DOM-based XSS (OWASP,

2020). Reflected and stored XSS attacks do occur on the server side while the DOM-based ones occur on the

client side of an application. Successful XSS attacks allow attackers to carry out malicious activities such as

stealing cookies, transferring private information, hijacking a user’s account, manipulating the web content, or

causing denial-of-service attacks.

The existing XSS detection and removal techniques can be categorized into static analysis, dynamic analysis,

secure programming, modeling, and hybrid analysis. Each of the categories is discussed in detail in the paper

with their limitations.

The rest of the paper is organised as follows. Section II presents the background of and the different types of

XSS. Section III details the different detection and removal techniques for XSS vulnerabilities and their

 Isatou Hydara*, Abu Bakar Md Sultan, Hazura Zulzalil, Novia Admodisastro

1976

limitations, and last but not the least Section IV concludes the paper and provides recommendations for future

research.

2. Background of Cross-Site Scripting Vulnerabilities

2.1 Cross-Site Scripting Vulnerabilities

XSS vulnerabilities were first discovered in the 1990s following the emergence of the World Wide Web.

They make the top list of the most common security vulnerabilities that are affecting web applications (Hydara,

Sultan, Zulzalil, & Admodisastro, 2015). They are classified as input validation problems that make possible the

injection of malicious code into trusted web applications. This is due to the failure, during software development,

to validate inputs from the web application users that are used in the output (Acunetix, 2020; CWE, 2020;

OWASP, 2020; Hussain et al., 2017). This failure to properly verify the user inputs enables hackers to attack an

application.

Web applications usually fail to verify the user inputs or they do it incorrectly, thus allowing the hacker the

opportunity of exploiting for vulnerabilities(CWE, 2020). Hence, whenever a user visits a web application, the

browser can unknowingly execute the malicious code injected by the hacker. Once the browser is infected with

the malicious code, the user's sessions are then hijacked and malicious activities can be conducted by the hacker.

Figure 1 shows an overview of XSS attack.

Successfully carried out XSS attacks can lead to many problems for both web application and user. The

attacker is able to easily inject malicious scripts to an application's user input field and, if not properly validated,

can impersonate their victims to carry out many malicious activities. Such activities can include cookie stealing,

manipulating web content, causing denial-of-service and transferring private information.

Figure 1. A High Level View of Typical XSS Attack, adapted from (Acunetix, 2020)

2.2 Types of Cross-Site Scripting Vulnerabilities

Reflected XSS (Non-Persistent XSS or Type I XSS) attack occurs when user input is used immediately by

the server-side to generate an output page for the user (OWASP, 2020). If the provided input was not validated

and is included without any HTML encoding, it can result to the execution of the input provided. Therefore,

when invalidated user input has been included in the generated page, then the client-side code is injected and

execute into the dynamic page. For example full access to a page's content can be obtained when an attacker

manages to convince a potential victim to follow a malicious URL that injects code into the results page.

The Limitations of Cross-Site Scripting Vulnerabilities Detection and Removal Techniques

1977

Stored XSS attacks are the most powerful types of attack. They are also referred to as Persistent or Type II

XSS. This form of XSS attack occurs when the inserted user input is first stored on the server (databases, file

systems, or other locations). Eventually, this will be displayed to the web application users in a web page without

any HTML encoding (OWASP, 2020).

DOM-based XSS (Type III XSS) is quite different from Type I and II. The JavaScript malware payloads do

not need to be sent to the Web server to enable exploitation (OWASP, 2020). Pieces of JavaScript code can

access a URL request parameter and use it to write some HTML code into its page, if no HTML encoding is

done. The newly written data will, therefore, be re-interpreted by the browser such as HTML and this may also

add some client-side script.

3. Related Work

Sarmah et al. (Sarmah, Bhattacharyya, & Kalita, 2018) have conducted a comprehensive survey on the

detection methods of XSS attacks and classified them according to their deployment areas and mechanisms used.

They also identified some tools that support the detection of XSS attacks. Nythiya et al. (Nithya, Lakshmana

Pandian, & Malarvizhi, 2015) also survey the existing XSS attack methods and the current approaches for their

detection and prevention. They also gave detailed backgrounds on XSS attacks.

Alkhurafi and Al-Ahmad (Al-Khurafi & Al-Ahmad, 2015) survey and discussed the most prevailing web

application attacks that are XSS, SQL Injections, Session Management, and Broken Authentication. They

illustrated each attack and its different types and identify some possible mitigation methods. Likewise, Al-

Ghamdi (AL-Ghamdi, 2013) has identified and discussed various existing techniques for web application

security testing, a well the security challenges of new technologies.

Li and Xue (Li & Xue, 2014) conducted a survey on the server-side techniques to secure web applications

from attacks including XSS. They discuss three common security vulnerabilities and the types of attacks (input

validation vulnerability, session management vulnerability, and application logic vulnerability) that exploit them,

and identify existing approaches that to mitigate them. They also highlighted emerging challenges imposed by

new programming methodologies and technologies.

Garcia-Alfaro and Navarro-Arribas (Garcia-Alfaro & Navarro-Arribas, 2008) also surveyed the two most

common XSS attacks, reflected XSS and Stored XSS and how they are carried out. They then discuss the

existing solutions to tackle these attacks and their applicability.

4. Exisiting Xss Detection and Removal Techniques and Their Limitations

This section briefly discusses the existing techniques and approaches for the detection and removal of XSS

vulnerabilities in desktop and mobile web applications. They can be categorized into static analysis, dynamic

analysis, modeling, and hybrid analysis. Table 1 summarizes the techniques and their limitations.

4.1. Static Analysis

Static analysis techniques are solutions that carry out XSS vulnerability detection at the source code level of

web applications(Gupta & Gupta, 2016; Kurniawan, Abbas, Trisetyarso, & Isa, 2018). They help to track data

through an application and identify vulnerable parts of a source code thereby detecting XSS vulnerabilities. The

most common detection techniques under static analysis are static taint analysis, data flow analysis, string

analysis, precise alias analysis, program slicing, and symbolic execution. The advantages of these techniques are

that they can be carried out without running the source code and the detected vulnerabilities can be removed

directly from the source code. The major limitation of these techniques is their high rate of false positives. This is

because of the conservative nature of these techniques. Another limitation is the source codes of applications are

needed to conduct these security tests.

4.2. Dynamic Analysis

Dynamic analysis techniques detect XSS vulnerabilities in web applications that are already deployed online

during runtime(Gupta, Gupta, & Chaudhary, 2018; Kaur et al., 2018). They intercept and analyze input data

coming into an application from users and determine whether it is harmful or not. Such techniques include

penetration testing, web monitoring, filtering, dynamic analysis, taint tracking, and flow analysis. Their

advantage is they can be carried out without the availability of the application source code. Also, some malicious

 Isatou Hydara*, Abu Bakar Md Sultan, Hazura Zulzalil, Novia Admodisastro

1978

behaviours in an application can only be detected while running the application. The limitations of these

techniques are that attackers can use obfuscation to hide their attack patterns and carry out successful XSS

attacks. Also, these techniques require more computing resources to simulate the running environment of web

applications.

4.3. Secure Programming

Secured programming techniques detect unsecure coding in the programming environment and ensure that

programming guidelines and rules are followed during the development of web applications (Grabowski,

Hofmann, & Li, 2012; Johns, Beyerlein, Giesecke, & Posegga, 2010). These techniques include Type Systems

(Grabowski et al., 2012) a technique that automatically enforces programming guidelines, and ELET (Embedded

Language Encapsulation Type)(Johns et al., 2010) used for enforcing secure code generation in a programming

language. Their advantage is they can help developers to adhere to secure coding practices while developing web

applications. The limitation of these techniques is that many developers do not like to use them as they feel they

slow them down in their work.

4.4. Modeling

Modeling techniques (Elhakeem & Barry, 2013; Gol & Shah, 2015) are not as commonly used in XSS

detection as the previous two categories, but they are still important solutions. Existing modeling techniques for

XSS detection include model checking, finite state machine, data mining, and threading. Most models are

designed to provide guidelines to developers and security testers during coding and testing. They have the

advantage of helping analysts and developers to mitigate vulnerabilities in all stages of application development.

The major limitation of these is that in most cases the guidelines are not read and followed while coding due to

time constraints of development projects.

4.5. Hybrid Analysis

Due to the limitations of the previous techniques and approaches, most research studies are now combining

different techniques of XSS detection known as hybrid analysis (Wang, Zhu, Tan, & Zhou, 2017). It is used in

order to reduce the limitations of using a single technique or approach. Combining static and dynamic analyses

as well as modeling and secure programming has the advantage of providing more coverage in terms of

designing, coding, security testing of the code and the running of the application, as well as guiding the

developers. Hybrid analysis still have their limitations; however, they are an improvement on previous

techniques.

Table 1. Summary of XSS Detection Techniques.

TECHNIQUE DESCRIPTION ADVANTAGES LIMITATIONS

Static

Analysis

An analysis technique that uses the source

code of an application to detect

vulnerabilities without running the said

application.

Vulnerability testing can

be done without running

the application, and in

the early stage of

development.

Higher rate of false

positives and needs

source code.

Dynamic

Analysis

A technique that analyses a web

application for potential while it is

running.

It does not require

source code to be carried

out.

Attackers can use

obfuscation to bypass

defenses.

Secure

Programming

A technique that detects unsecure code in

the development environment and forces

the developers to use secure coding

practices.

Vulnerabilities can be

detected and eliminated

while coding the

application.

Hints and suggestions

for secure coding may

be ignored by

developers

Modeling

These techniques are used to demonstrate

safe practices when designing and

developing web applications.

They enable to mitigate

vulnerabilities at all

stages of application

development.

Guidelines are usually

not followed by

developers.

Hybrid

Analysis

Hybrid techniques are a combination of

any two detection techniques that provided

better performance than any of the

individual techniques.

Has the benefits of the

combined techniques

May face limitations of

its combining

techniques.

The Limitations of Cross-Site Scripting Vulnerabilities Detection and Removal Techniques

1979

5. Conclusion

In this short study, we have investigated the various techniques that have been proposed by previous

researchers to solve the XSS security problems. We have discussed the background of XSS attacks and the

different types of XSS attacks. We then identified the limitations in the existing techniques we discussed as well

as the needed improvements. Based on the limitations identified, new areas of research should be explored

continuously with the expectation of discovering more secure ways of developing software and preventing more

XSS attacks. Researcher can work on reducing the high rates of false positives and false negatives that limit

static analysis and dynamic analysis, respectively. More focus on secure programming and modelling is needed

to educate, train and guide developers on the importance of vulnerabilities mitigation. A combination of different

techniques with hybrid analysis that will put together the best features of the combining techniques is also a good

research direction.

6. Acknowledgment

We acknowledge that this research received support from the Fundamental Research Grant Scheme

FRGS/1/2015/ICT01/UPM/02/12 awarded by Malaysian Ministry of Higher Education to the Faculty of

Computer Science and Information Technology at Universiti Putra Malaysia.

References

1. Acunetix. (2020). What is Cross Site Scripting and How Can You Fix it? Retrieved February 6,

2020, from http://www.acunetix.com/websitesecurity/cross-site-scripting/

2. AL-Ghamdi, A. S. A.-M. (2013). A Survey on Software Security Testing Techniques.

International Journal of Computer Science and Telecommunications, 4(4), 14–18.

3. Al-Khurafi, O. B., & Al-Ahmad, M. A. (2015). Survey of Web Application Vulnerability Attacks.

In 2015 4th International Conference on Advanced Computer Science Applications and

Technologies (ACSAT) (pp. 154–158). https://doi.org/10.1109/ACSAT.2015.46

4. CWE. (2020). CWE - CWE-79: Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting’) (2.5). Retrieved February 5, 2020, from

http://cwe.mitre.org/data/definitions/79.html

5. Elhakeem, Y. F. G. M., & Barry, B. I. A. (2013). Developing a security model to protect websites

from cross-site scripting attacks using ZEND framework application. In Proceedings - 2013

International Conference on Computer, Electrical and Electronics Engineering: “Research Makes

a Difference”, ICCEEE 2013 (pp. 624–629). IEEE.

https://doi.org/10.1109/ICCEEE.2013.6634012

6. Garcia-Alfaro, J., & Navarro-Arribas, G. (2008). A survey on detection techniques to prevent

cross-site scripting attacks on current web applications. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

5141 LNCS, 287–298. https://doi.org/10.1007/978-3-540-89173-4_24

7. Gol, D., & Shah, N. (2015). Detection of Web Appication Vulnerability Based on RUP Model. In

National Conference on Recent Advances in Electronics & Computer Engineering (RAECE) (pp.

96–100). IEEE. https://doi.org/10.1109/RAECE.2015.7510233

8. Grabowski, R., Hofmann, M., & Li, K. (2012). Type-Based Enforcement of Secure Programming

Guidelines — Code Injection Prevention at SAP. FAST 2011, Lecture Notes in Computer Science,

7140, 182–197.

9. Gupta, S., & Gupta, B. B. (2016). XSS-SAFE: A Server-Side Approach to Detect and Mitigate

Cross-Site Scripting (XSS) Attacks in JavaScript Code. Arabian Journal for Science and

Engineering, 41(3), 897–920. https://doi.org/10.1007/s13369-015-1891-7

10. Gupta, S., Gupta, B. B., & Chaudhary, P. (2018). Hunting for DOM-Based XSS vulnerabilities in

mobile cloud-based online social network. Future Generation Computer Systems, 79, 319–336.

https://doi.org/10.1016/j.future.2017.05.038

11. Hussain, A., Mkpojiogu, E.O.C., Nawi, M.N.M. (2017). Capturing customer satisfaction and

dissatisfaction in software requirements elicitation for features in proposed software systems.

Journal of Engineering and Applied Sciences, 12 (21), pp. 5590-5597.

12. Hydara, I., Sultan, A. B. M., Zulzalil, H., & Admodisastro, N. (2015). Current state of research on

cross-site scripting (XSS) - A systematic literature review. Information and Software Technology,

58, 170–186. https://doi.org/10.1016/j.infsof.2014.07.010

13. Javed, A., & Schwenk, J. (2014). Towards Elimination of Cross-Site Scripting on Mobile Versions

of Web Applications. In Y. Kim, H. Lee, & A. Perrig (Eds.), 14th WISA: International Workshop

 Isatou Hydara*, Abu Bakar Md Sultan, Hazura Zulzalil, Novia Admodisastro

1980

on Information Security Applications (Vol. LNCS 8267, pp. 103–123). Jeju Island, Korea:

Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-05149-9

14. Johns, M., Beyerlein, C., Giesecke, R., & Posegga, J. (2010). Secure Code Generation for Web

Applications. Lecture Notes in Computer Science, 5965, 96–113.

15. Kaur, G., Pande, B., Bhardwaj, A., Bhagat, G., & Gupta, S. (2018). Efficient yet Robust

Elimination of XSS Attack Vectors from HTML5 Web Applications Hosted on OSN-Based Cloud

Platforms. Procedia Computer Science, 125, 669–675. https://doi.org/10.1016/j.procs.2017.12.086

16. Kurniawan, A., Abbas, B. S., Trisetyarso, A., & Isa, S. M. (2018). Static Taint Analysis Traversal

with Object Oriented Component for Web File Injection Vulnerability Pattern Detection. Procedia

Computer Science, 135, 596–605. https://doi.org/10.1016/j.procs.2018.08.227

17. Li, X., & Xue, Y. (2014). A Survey on Server-Side Approaches to Securing Web Applications.

ACM Computing Surveys (CSUR), 46(4), 1–30. https://doi.org/10.1145/2541315

18. Nithya, V., Lakshmana Pandian, S., & Malarvizhi, C. (2015). A survey on detection and

prevention of cross-site scripting attack. International Journal of Security and Its Applications,

9(3), 139–152. https://doi.org/10.14257/ijseia.2015.9.3.14

19. OWASP. (2020). Cross-site Scripting (XSS) - OWASP. Retrieved February 5, 2020, from

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

20. Sarmah, U., Bhattacharyya, D. K., & Kalita, J. K. (2018). A survey of detection methods for XSS

attacks. Journal of Network and Computer Applications, 118(June), 113–143.

https://doi.org/10.1016/j.jnca.2018.06.004

21. Wang, R., Zhu, Y., Tan, J., & Zhou, B. (2017). Detection of malicious web pages based on hybrid

analysis. Journal of Information Security and Applications, 35, 68–74.

https://doi.org/10.1016/j.jisa.2017.05.008

