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Abstract: In this research paper, Fourier-Motzkin elimination technique is suggested to solve LFPP, which is based upon the 

concept of bounds. The proposed approach is computationally more efficient and easy to understand as compared to the 

traditional simplex method. An illustration has been given at the end. 
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1. Introduction  

Linear fractional programming is an important subclass of Mathematical Optimization. A linear fractional 

programming problem is basically the ratio of two linear functions subject to linear constraints along with non-

negative restrictions. Earlier Charnes et al (1962), Swarup (1963), Gass (1985), Hirche (1996) and Chadha 

(1999) solved fractional programming problems and gave iterative algorithms. Various elimination techniques to 

solve linear programming problems are given earlier by Williams (1986), Karmarker (1984), Kohler (1973), 

Sharma et al (2003) , Kanniappan et al  (1998) and Jain et al (2004, 2008a, 2008b, 2008c, 2012a, 2012b , 2014, 

2018, 2009, 2013). Puri et al (1974) proposed an enumerative procedure to find an optimal solution of LFPP. 

The paper unfolds as follows:- Section 2 describes the application of Fourier-Motzkin elimination technique 

on equations as well as inequalities.  Problem formulation is given in the section 3 which is to be solved by 

proposed technique. To demonstrate the whole procedure of the proposed technique, an illustration is given in 

the section 4. This concludes the paper. 

2. Fourier-Motzkin Elimination Technique ( F-ME Technique) 

F-ME technique is an important process to solve small LPPs. In this process, the number of variables reduces one 

by one in each iteration. Initially, F-ME technique was applied on equations. 

There is exactly one solution when we solve an equation provided that the equation is solvable; but in the case of 

an inequality, there may be many solutions possible in bounded form. Among these solutions, we have to choose 

an optimize solution according to the requirement of the problem under consideration. Here, we have applied F-

ME technique to solve the system of inequalities of the same nature either ( ≤ ) or ( ≥ ). This process consists 

three different classes of  inequalities w.r.t. each variable 𝑥𝑖 e.g. first class, second class and third class. 

First class: If the coefficient of the variable 𝑦𝑖  is +1, then the inequalities having this type of coefficients may be 

classified in this class. 

Second class: If the coefficient of the variable 𝑦𝑖  is -1, then the inequalities having this type of coefficients may 

be classified in this class. 

Third class : If the coefficient of the variable 𝑦𝑖  is 0, then the inequalities having this type of coefficients may be 

classified in this class. 

Now, we have to eliminate the variables to achieve the optimality of the problem. We can eliminate the 

variables by combining the inequalities in such a way that the variables reduced one by one in each iteration. 

Proceeding in the similar fashion, at the end of the process there remains a single variable with bounded values. 

From all the bounded values of the last variable, we can find the permissible value of that particular variable. 
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Now, from the process of back-substitution we can obtain the values of other variables and thus the optimal 

solution is reached. 

3. The Problem 

Consider the linear fractional programming problem: 

Max.   Z = 
(𝑎𝑦+ ∝)( 𝑐 𝑦+ 𝛽) 

Such that  𝐴 𝑦 ≤ 𝑏 

and   𝑦 ≥ 0   

It is assumed that  the feasible solution set constitutes a convex polyhedral with finite extreme points along 

with  ( 𝑐 𝑦 +  𝛽) ≠ 0.  

First of all, we have to reframe the above problem in standard form by converting objective function to a 

constraint inequality. Then, we have  

Max. Z  ( 𝑐𝑦 +  𝛽) 𝑍 − ( 𝑎 𝑦 +  𝛼) ≥ 0  −( 𝑐𝑦 +  𝛽) 𝑍 + ( 𝑎 𝑦 +  𝛼) ≥ 0  
 

Further, we have to make all the inequalities (involved in the problem along with above inequality) of the 

same nature. Therefore, the above problem becomes: 

Max. Z 

     ( 𝑐𝑦 +  𝛽) 𝑍 − ( 𝑎 𝑦 +  𝛼) ≥ 0  

                                              −( 𝑐𝑦 +  𝛽) 𝑍 + ( 𝑎 𝑦 +  𝛼) ≥ 0  − 𝐴 𝑦 ≥  −𝑏 𝑦 ≥ 0 

Now, we have to form three classes of the variable 𝑦𝑖 . After that, we have to combine the inequalities in such 

a way that we could be able to reduce the variables one by one in each iteration. If at any stage of this process we 

found 0 ≤ 𝑑 where 𝑑 is not a positive number, then it can be concluded that an infeasible solution exists of the 

problem under consideration, otherwise the solution achieved is feasible. 

4. Example 

Let us take a LFPP mentioned below which have been solved earlier by different elimination techniques 

by Jain et al 6 & 9. 

Max. Z = 
5 𝑥1+3 𝑥2 5 𝑥1+2 𝑥2+1  

s.t.  3 𝑥1 + 5 𝑥2  ≤ 15 

             5 𝑥1 + 2 𝑥2  ≤ 10 

and    𝑥1 ,𝑥2  ≥ 0. 

First of all, we have to rewrite the above problem in standard form by converting objective function to a 

constraint inequality. Then, we have  

Max. Z 5(𝑍 − 1)𝑥1 + (2𝑍 − 3) 𝑥2 + 𝑍 ≥ 0            −5(𝑍 − 1)𝑥1 − (2𝑍 − 3) 𝑥2 − 𝑍 ≥ 0  

Further, we have to make all the inequalities (involved in the problem along with above inequality) of the 

same nature. 

Therefore, the above problem becomes: 

Max. Z                                                      5(𝑍 − 1)𝑥1 + (2𝑍 − 3) 𝑥2 + 𝑍 ≥ 0                                                            −5(𝑍 − 1)𝑥1 − (2𝑍 − 3) 𝑥2 − 𝑍 ≥ 0  −3 𝑥1 − 5 𝑥2  ≥  −15 −5 𝑥1 − 2 𝑥2  ≥  −10 𝑥1 ≥ 0 𝑥2  ≥ 0 
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Now our object is to find the optimal value of Z for non-negative values of decision variables 𝑥1 and 𝑥2. 

Therefore for maximum value of Z, we assume that 1 < 𝑍 <  32. 

Looking into the above bounds of Z, above equations reduces to:             − 𝑥1 −  (2 𝑍−3 )5 (𝑍−1 ) 𝑥2 −  𝑍5 ( 𝑍−1 )  ≥ 0            (1)        𝑥1 +  (2 𝑍−3 )5 (𝑍−1 ) 𝑥2 + 𝑍5 ( 𝑍−1 )  ≥ 0               (2) 

            − 𝑥1 −  53 𝑥2 ≥  −5                                                                                                 (3) 

            − 𝑥1 −  25 𝑥2  ≥  −2                                                                                (4) 𝑥1  ≥ 0                                                                                                               (5) 𝑥2 ≥ 0                                                                                                               (6) 

 

After eliminating 𝑥1 from the above inequalities, we have  − 𝑥2 +  3𝑍(19 𝑍−16 )  ≥  − 75 (𝑍−1)( 19 𝑍−16 )       (7) −𝑥2 +  𝑍  ≥ −10 (𝑍 − 1)       (8) 𝑥2 −  𝑍(3−2𝑍) ≥ 0         (9) − 𝑥2 ≥  −3           (10) − 𝑥2 ≥  −5           (11)                                                              𝑥2 ≥ 0                 (12)                                                               

After eliminating 𝑥2 from the above inequalities, we have  

            𝑍 ≥ 7578           (13) 

            𝑍 ≥ 1011         (14) 

        −7 𝑍2 +  16 𝑍 − 9 ≥ 0    or  1 ≤ 𝑍 ≤ 97       (15)        − 11 𝑍2 +  24 𝑍 − 15 ≥ 0         (16) 𝑍 ≤  97          (17) 

            𝑍 ≤ 1511          (18) 

       Out of these values of Z, Z = 
1511 is the maximum amongst all the values but it doesn’t satisfy the 

inequality   −7 𝑍2 +  16 𝑍 − 9 ≥ 0 . Therefore, Z = 
97 is an optimal solution which satisfies all the inequalities. 

By putting Z = 
97 into the inequalities (7) - (12), we have 𝑥2  ≤ 3 𝑥2  ≤ 297  𝑥2  ≥ 3 𝑥2  ≤ 3 𝑥2 ≤  5 𝑥2  ≥ 0 

Out of these values, 𝑥2 = 3 satisfies all the inequalities altogether. 

By putting 𝑥2 = 3 and Z = 
97 into the inequalities (1)-(6), we get 𝑥1 ≥ 0 𝑥1  ≤ 0 𝑥1 ≤  45 
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The solution of above three inequalities comes out to be 𝑥1 = 0. 
Hence, 𝑥1 = 0 and  𝑥2 = 3 is an optimal solution of LFPP under consideration with Max. Z = 

97. 

5. Conclusion 

The proposed Fourier-Motzkin elimination technique is quite easy to understand and apply. It takes least 

computation time as compared to traditional simplex method to solve linear programming problem. An 

illustration is given at the end of the paper to simplify the whole procedure and the optimal solution thus obtained 

can be verified by the methods available in the literature so far e.g. graphical method, simplex method and other 

existing methods. 
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