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Abstract: The existence and uniqueness of solutions for FNIDE in the idea of Atangana-Baleanu derivative in 
Banach spaces are investigated in this research. In this case, the FD is taken in the Caputo sense. The Banach and 

Krasnoselskii-Schaefer FPT are used to show the desired results.  
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1. Introduction  

Due to models and intriguing outcomes in actual world occurrences, Atangana-Baleanu derivative has 

attracted many researchers in the last several years. Until now, however, Atangana et al. has to be conveyed for 

these operators theory that includes a nonsingular kernel.The application of fractional calculus techniques to IDE 

broadened the scope of its mathematical modelling and control study. The main distinction between IDE and 

FIDE is that the first concerns the derivation and integration of integer order, while the second concerns arbitrary 

order (see Agarwal et al., Dawood et al., Hamoud et al., Ntouyas et al., and Sousa et al.). As Balachanderran et 

al. and Hamoud et al. have demonstrated, the use of these equations has increased considerably in the modelling 

of real-life scientific and engineering issues, as integral modelling in terms of efficiency is more precise in 

translating realistic situations into mathematical formulations.Neutral DE is the DE, which relies on past and 

current functional values and are found in the mathematical fields.Santos, et al., have done a lot of study on the 

notion of FNDE and its applications. Baleanu et al.  recently explored the existence and uniqueness nature of a 

solution to the nonlinear problem of fractional limit value by use of FPT, 

 𝑐𝐷𝜈Δ(𝜔) = 𝐸(𝜔, Δ(𝜔)),𝜔 ∈ [0,𝑇],0 < 𝜈 < 1, 
 Δ(0) = Δ(𝑇),Δ(0) = 𝛽1Δ(𝜂),Δ(𝑇) = 𝛽2Δ(𝜂),0 < 𝜂 < 𝑇, 0 < 𝛽1 < 𝛽2 < 1. 

Devi and Sreedhar devised the generalised monotone iterative technique for solving CFIDE of type 

 𝑐𝐷𝜈Δ(𝜔) = 𝐸(𝜔, Δ(𝜔), 𝐼𝜈Δ(𝜔)),𝜔 ∈ [0, 𝑇], 0 < 𝜈 < 1, 
 Δ(0) = Δ0. 

The results obtained give an explicit mathematical solution of the CFIDE linear IVP which shows that such 

iterates converge consistently and monotonously to a combined minimal and maximum problem solution. 

Ulam stability and data dependency for the Caputo FDE type was studied by Wang and Zhou 

 𝑐𝐷𝜈Δ(𝜔) = 𝐸(𝜔, Δ(𝜔)),𝜔 ∈ [0,+∞),0 < 𝜈 < 1, 
 Δ(𝑎) = Δ0 . 
Dong et al. used Banach and Schauder FPT to obtain the uniqueness and existence of solutions to the 

problem provided by 

 𝑐𝐷0+𝜈 Δ(𝜔) = 𝐸(𝜔, Δ(𝜔))+ ∫ 𝜔0 Θ(𝜔,𝑠, Δ(𝑠))𝑑𝑠,𝜔 ∈ [0,𝑇], 0 < 𝜈 ≤ 1, 
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 Δ(0) = Δ0, 
Logeswari and Ravichandran investigated the existence of FNIDE in the concept of the Atangana-Baleanu 

derivative of the form  

 𝐴𝐵𝐶𝐷0+𝜈 [Δ(𝜔) − Λ(𝜔,Δ(𝜔),ΘΔ(𝜔))] = Λ∗(𝜔, Δ(𝜔),Θ∗Δ(𝜔)), 0 < 𝜈 < 1, 
 Δ(0) = Δ0, 
We will explore a more general problem of CFIDE termed Caputo fractional neutral VFIDE of the type 

 𝐴𝐵𝐶𝐷0+𝜈 [Δ(𝜔) − 𝐴(𝜔, Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔))] = 𝐵(𝑡, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)) (1) 

 Δ(0) = Δ0, (2) 

where 𝐴𝐵𝐶𝐷0+𝜈  is the Atangana-Baleanu Caputo FD of order 𝜈, 0 < 𝜈 < 1,𝜔 ∈ 𝐽:= [0,1],which is motivated 

by the prior studies. 

Consider 𝐾Δ(𝜔) = ∫ 𝜔0 𝑘(𝜔,𝑠,Δ(𝑠))𝑑𝑠, 𝐻Δ(𝜔) = ∫ 10 ℎ(𝜔, 𝑠,Δ(𝑠))𝑑𝑠, 𝐺Δ(𝜔) = ∫ 𝜔0 𝑔(𝜔, 𝑠,Δ(𝑠))𝑑𝑠, 
and 𝐹Δ(𝜔) = ∫ 10 𝜒(𝜔, 𝑠, Δ(𝑠))𝑑𝑠. 

The following is how the paper is structured:In Section 2, we review some basic definitions, lemmas, 

and theorems. In Section 3, we prove the existence and uniqueness results for the problem (1)-(2) using the FPT 

of Krasnoselskii-Schaefer and Banach. In Section 4, concluding remarks bring the paper to a close.  

2. Preliminaries 

Here are some definitions, notes and findings utilised throughout this article. (See Kilbas, A., 

Srivastava, H. and Trujillo, J. (2006), Zhou, Y. (2014)) 

Definition 2.1 The R-LFD of order 𝜈 > 0 of a function Δ:(0,∞)⟶ ℝ is defined by 

 𝑅𝐿𝐷𝜔𝜈Δ(𝜔) = 1Γ(𝑚−𝜈) ( 𝑑𝑑𝑡)𝑚∫ 𝜔𝑎 (𝜔 − 𝑠)𝑚−𝜈−1Δ(𝑠)𝑑𝑠,𝑚 − 1 < 𝜈 ≤ 𝑚, 
 where Γ(. ) is the Gamma function.    

Definition 2.2The R-L fractional integral of order 𝜈 > 0 of a function Δ: (0,∞) ⟶ ℝ, according to Riemann-

Liouville, the fractional integral that is considered as anti-FD of a function Δ is  

 𝐼𝜔𝜈Δ(𝜔) = 1Γ(𝜈)∫ 𝜔𝑎 (𝜔 − 𝑠)𝜈−1Δ(𝑠)𝑑𝑠, 𝑠 > 𝑎, (3) 

Definition 2.3 Caputo FD of order 𝜈 > 0 of a function Δ:(0,∞)⟶ ℝ, according to Caputo, the FD of 

a continuous and n-time differentiable function Δ is given as  

 𝑐𝐷𝜔𝜈Δ(𝜔) = 1Γ(𝑚−𝜈)∫ 𝜔𝑎 (𝜔 − 𝑠)𝑚−𝜈−1( 𝑑𝑑𝑠)𝑚Δ(𝑠)𝑑𝑠,𝑚 − 1 < 𝜈 ≤ 𝑚. 
Definition 2.4 The R-L AB-derivative of order 0 < 𝜈 ≤ 1  of a function Δ ∈ 𝐶([0,𝑇]) is normally 

defined as  

 𝐴𝐵𝐷0+𝜈 Δ(𝜔) = 𝛽(𝜈)1−𝜈 𝑑𝑑𝑡 (∫ 𝜔0 Δ(𝑠)𝐸𝜈[−𝜈 (𝜔−𝑠)𝜈1−𝜈 ]𝑑𝑠). (4) 

Definition 2.5 The Caputo AB-derivative of order 0 < 𝜈 ≤ 1 of a function Δ ∈ 𝐶([0,𝑇]) is normally defined 

as  

 𝐴𝐵𝐶𝐷0+𝜈 Δ(𝜔) = 𝛽(𝜈)1−𝜈 ∫ 𝜔0 Δ′(𝑠)𝐸𝜈[−𝜈 (𝜔−𝑠)𝜈1−𝜈 ]𝑑𝑠. (5) 

Definition 2.6  The associative fractional integral of (5) is  

 𝐴𝐵𝐼0+𝜈 Δ(𝜔) = 1−𝜈𝛽(𝜈)Δ(𝜔) + 𝜈𝛽(𝜈) 𝐼0+𝜈 Δ(𝜔) 
where 𝐼0+𝜈  is R-L integral mentioned in (3).  

Lemma 2.1(Ascoli-Arzela theorem). Let 𝑆 = {𝑠(𝜔)}  is a function family of continuous mappings 𝑠: 𝐽 ⟶ 𝑋.  If 𝑆  is uniformly bounded and equicontinuous, and for any 𝜔∗ ∈ 𝐽,  the set {𝑠(𝜔∗)}  is relatively 

compact, then there exists a uniformly convergent function sequence {𝑠𝑛(𝜔)}(𝑛 = 1,2, . . . , 𝜔 ∈ 𝐽) in 𝑆.    

Theorem 2.1 (Banach FPT). Let (𝑆, ∥. ∥) be a complete normed space, and let the mapping 𝐹: 𝑆 ⟶ 𝑆 be 

a contraction mapping. Then 𝐹 has exactly one fixed point.  
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Theorem 2.2  (Krasnoselskii-Schaefer FPT). Let 𝑆 be nonempty, closed, bounded and convex subset of 

a real Banach space 𝑋 and let 𝑇1 and 𝑇2 be operators on 𝑆 satisfying the following conditions 

1.   𝑇1 is contraction on 𝑆, 

2.   𝑇2 is completely continuous on 𝑆. 

Then either 

(I)   There exists a 𝑥 ∈ 𝑆s.t.𝑇1𝑥+ 𝑇2𝑥 = 𝑥, or 

(II)   The set 𝜖 = {Δ ∈ 𝑋:𝜆𝑇1(Δ𝜆)+ 𝜆𝑇2(Δ)} is unbounded for 𝜆 ∈ (0,1). 
Lemma 2.2 Let Δ(𝜔),𝜒(𝜔),𝑞(𝜔) ∈ 𝐶(𝐽, ℝ+) and let 𝑛(𝜔) ∈ 𝐶(𝐽, ℝ+) be nondecreasing for which the 

inequality  

 Δ(𝜔) ≤ 𝑛(𝜔) + ∫ 𝜔0 𝜒(𝑠)Δ(𝑠)𝑑𝑠 + ∫ 𝜔0 𝜒(𝑠) ∫ 𝑠0 𝑞(𝑟)Δ(𝑟)𝑑𝑟𝑑𝑠, 
holds for any 𝑡 ∈ 𝐽. Then  

 Δ(𝜔) ≤ 𝑛(𝜔)[1 + ∫ 𝜔0 𝜒(𝑠)(∫ 𝑠0 (𝜒(𝑟) + 𝑞(𝑟))𝑑𝑟)𝑑𝑠]. 
3. Existence and uniqueness results 

Now, we provide the following hypotheses before starting and establishing the major results: 

(A1)𝐵: 𝐽 × ℝ ×ℝ ×ℝ⟶ ℝ is continuous function, and there exist a positive constant 𝑀1 such that  

 ∥ 𝐵(𝜔, Δ1,𝑤1,Φ1) − 𝐵(𝜔, Δ2 ,𝑤2 ,Φ2) ∥2≤ 𝑀1(∥ Δ1− Δ2 ∥ +∥ 𝑤1− 𝑤2 ∥ +∥ Φ1 −Φ2 ∥), 
for all Δ1, Δ2,𝑤1 ,𝑤2 ,Φ1 and Φ2 ∈ ℝ are continuous functions on 𝐽 in the Banach spaces. Let 𝑀2 = max𝜔∈𝐽 ∥𝐵(𝜔, 0,0,0) ∥ and 𝑀 = max{𝑀1,𝑀2}. 

(A2)𝐴: 𝐽 × ℝ × ℝ×ℝ⟶ ℝ is continuous function, and there exist a positive constant 𝐿1 such that  

 ∥ 𝐴(𝜔, Δ1,𝑤1 ,Φ1) − 𝐴(𝜔,Δ2 ,𝑤2 ,Φ2) ∥2≤ 𝐿1(∥ Δ1− Δ2 ∥ +∥ 𝑤1−𝑤2 ∥ +∥ Φ1 −Φ2 ∥), 
 for all Δ1, Δ2 ,𝑤1 ,𝑤2 ,Φ1 and Φ2 ∈ ℝ are continuous functions on 𝐽 in the Banach spaces. Let 𝐿2 = max𝜔∈𝐽 ∥𝐴(𝜔, 0,0,0) ∥ and 𝐿 = max{𝐿1 , 𝐿2}. 

(A3) There exist 𝑁1𝑘 > 0 and 𝑁1ℎ > 0 such that  

 ∥ 𝑘(𝜔, 𝑠, Δ)− 𝑘(𝜔, 𝑠,Φ) ∥2≤𝑁1𝑘 ∥ Δ −Φ ∥ 
 ∥ ℎ(𝜔, 𝑠,Δ) − ℎ(𝜔, 𝑠, Φ) ∥2≤𝑁1ℎ ∥ Δ −Φ ∥ 

 for all Δ and Φ ∈ ℝ are continuous function on 𝐽 in the Banach spaces. Let 𝑁2𝑘 = max𝜔∈𝐽 ∥ 𝑘(𝜔, 𝑠, 0) ∥, 𝑁𝑘 = max{𝑁1𝑘,𝑁2𝑘}, and 𝑁2ℎ = max𝜔∈𝐽 ∥ ℎ(𝜔, 𝑠, 0) ∥, 𝑁ℎ = max{𝑁1ℎ, 𝑁2ℎ}. 
(A4) There exist 𝐶1𝑔 > 0 and 𝐶1𝑓 > 0 such that  

 ∥ 𝑔(𝜔, 𝑠, Δ)− 𝑔(𝜔, 𝑠,Φ) ∥2≤ 𝐶1𝑔 ∥ Δ −Φ ∥ 
 ∥ 𝜒(𝜔, 𝑠, Δ)− 𝜒(𝜔, 𝑠, Φ) ∥2≤ 𝐶1𝑓 ∥ Δ − Φ ∥ 

 for all Δ and Φ ∈ ℝ are continuous function on 𝐽 in the Banach spaces 𝑋. Let 𝐶2𝑔 = max𝜔∈𝐽 ∥ 𝑔(𝜔, 𝑠,0 ∥, 𝐶𝑔 = max{𝐶1𝑔, 𝐶2𝑔}, and 𝐶2𝑓 = max𝜔∈𝐽 ∥ 𝜒(𝜔, 𝑠, 0 ∥, 𝐶𝑓 = max{𝐶1𝑓, 𝐶2𝑓}. 
(A5) For each 𝑟, 𝐵𝑟 = {Δ ∈ 𝐶[𝐽, 𝑋]: ∥ Δ ∥≤ 𝑟} ⊆ 𝐶[𝐽, 𝑋] , then 𝐵𝑟  is clearly a bounded closed and 

convex subset in 𝐶([0,1],𝑋) where 𝑟 ≥ (1 − 2𝑈)−1(∥ Δ0 ∥ +𝑈) and consider 𝑈 = max{𝐿,𝑀} and 𝑈 < 12. 
(A6) There exist two functions 𝑞,𝑝 ∈ 𝐿1(𝐽,𝑅+) such that  

 (𝑖)|𝐵(𝜔,Δ,𝑤, Φ)| ≤ 𝑞(𝜓(∥ Δ ∥))+ |𝑤| + |Φ|, foreach(𝜔, Δ,𝑤, Φ) ∈ 𝐽 × 𝐷 × 𝐸 × 𝐸. 
 (𝑖𝑖)|𝐴(𝜔,Δ,𝑤, Φ)| ≤ 𝑝(𝜓(∥ Δ ∥)) + |𝑤| + |Φ|, foreach(𝜔, Δ,𝑤,Φ) ∈ 𝐽 × 𝐷 × 𝐸 × 𝐸, 

 where 𝐸 is measurable function and 𝜓: [0,∞)⟶ (0,∞) will be continuous non-decreasing function.  
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(A7) There exist constants 𝑀∗, 𝜗∗ > 0 such that  

 
(1−𝐿−𝜗∗)𝑀∗∥𝜙+𝜗∗∥+(𝐿(𝑁𝑘+𝑁ℎ)𝜔+𝜗∗(𝐶𝑔+𝐶𝑓)𝜔)(𝜓𝑀∗+1) > 1. 

Lemma 3.1  If (A3) and (A4) are satisfied, then the estimate 

 

 ∥ 𝐾Δ(𝜔) ∥≤ 𝜔(𝑁1𝑘 ∥ Δ ∥ +𝑁2𝑘), ∥ 𝐾Δ(𝜔) − 𝐾Φ(𝜔) ∥≤ 𝑁𝑘𝜔 ∥ Δ −Φ ∥, 
 

 ∥ 𝐻Δ(𝜔) ∥≤ 𝜔(𝑁1ℎ ∥ Δ ∥ +𝑁2ℎ), ∥ 𝐻Δ(𝜔) − 𝐻Φ(𝜔) ∥≤ 𝑁ℎ𝜔 ∥ Δ − Φ ∥, 
 

 ∥ 𝐺Δ(𝜔) ∥≤ 𝜔(𝐶1𝑔 ∥ Δ ∥ +𝐶2𝑔),∥ 𝐺Δ(𝜔) − 𝐺Φ(𝜔) ∥≤ 𝐶𝑔𝜔 ∥ Δ −Φ ∥, 
and  

 ∥ 𝐹Δ(𝜔) ∥≤ 𝜔(𝐶1𝑓 ∥ Δ ∥ +𝐶2𝑓), ∥ 𝐹Δ(𝜔) − 𝐹Φ(𝜔) ∥≤ 𝐶𝑓𝜔 ∥ Δ −Φ ∥,𝜔 ∈ 𝐽. 
Proposition 3.1For 0 < 𝜈 < 1, 𝜔 ∈ 𝐽, we conclude that  

 ( 𝐴𝐵𝐼0+𝜈 ( 𝐴𝐵𝐷0+𝜈 𝑢))(𝜔) = Δ(𝜔) − Δ(0)𝐸𝜈(𝜆𝜔𝜈) − 𝜈1−𝜈Δ(0)𝐸𝜈,𝜈+1(𝜆𝜔𝜈) 
 = Δ(𝜔) − Δ(0). 

Lemma 3.2Let 0 < 𝜈 < 1,𝜔 ∈ 𝐽 and Δ ∈ 𝐶[0,1] is called a mild solution of the problem (1)-(2) if and only if Δ satisfies the following equation:  

 Δ(𝜔) = Δ0− 𝐴(0,Δ(0),0,0) + 𝐴(𝜔, Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔)) (6) 

 + 𝐴𝐵𝐼0+𝜈 𝐵(𝜔,Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)). 
Theorem 3.1If the assumptions (A1)-(A5) are satisfied and if 𝐴(0,Δ(0),0,0) = 𝐵(0,Δ(0),0,0) = 0 and 

 ((𝑁𝑘 +𝑁ℎ)𝜔 + 1−𝜈𝛽(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔) + 1𝜈𝛽(𝜈)Γ(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔)) < 1,𝜔 ∈ 𝐽, 
then the problem (1)-(2) has a unique solution on 𝐽.  
Proof.   First, we will show that Δ(𝜔) satisfies (1)-(2) iff Δ(𝜔) satisfies (6). 

Consider Δ(𝜔) satisfy (1), then by using the AB-integral of (1), we get  

 (𝐴𝐵𝐼0+𝜈 𝐴𝐵𝐷0+𝜈 (Δ(𝜔) − 𝐴(𝜔, Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔)))) = 𝐴𝐵𝐼0+𝜈 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)). (7) 

 Now, by using Proposition 3.1, we obtain  

 Δ(𝜔) − 𝐴(𝜔, Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔)) − (Δ0−𝐴(0,Δ(0),0,0)) =𝐴𝐵𝐼0+𝜈 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)). 
 Since Δ(0) = Δ0 from (2) and 𝐵(0,𝑥(0),0,0) = 0, then (6) satisfied. Now, if Δ(𝜔) satisfy (6), then taking 𝐵(0,𝑥(0),0,0) = 0, it is visibly that Δ(0) = Δ0. In R-L sense using the AB-derivative of (6) and substitute (𝐴𝐵𝐷0+𝜈 ( 𝐴𝐵𝐼0+𝜈 𝑢))(𝜔) = Δ(𝜔), we obtain  

 (𝐴𝐵𝑅𝐷0+𝜈 𝑢)(𝜔) = Δ0(𝐴𝐵𝑅𝐷0+𝜈 1)(𝜔) + (𝐴𝐵𝑅𝐷0+𝜈 )(𝐴(𝜔,Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔))) 
 −𝐴(0,Δ(0),0,0)(𝐴𝐵𝑅𝐷0+𝜈 1)(𝜔) + (𝐴𝐵𝑅𝐷0+𝜈 (𝐴𝐵𝐼0+𝜈 ))𝐵(𝜔,Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)). 

 Thus, we have  

 𝐴𝐵𝑅𝐷0+𝜈 (𝑢(𝜔) − 𝐴(𝜔, Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔)))) = (Δ0− 𝐴(0,Δ(0),0,0)))𝐸𝜈( −𝜈1−𝜈𝜔𝜈) 
 +𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)). 

Now, define the operator  

 𝑇Δ(𝜔) =Δ0−𝐴(0,Δ(0),0,0) + 𝐴(𝜔, Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔)) + 𝐴𝐵𝐼0+𝜈 𝐵(𝜔,Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)). 
 Then by Lemma 3.1, we have for Δ ∈ 𝐵𝑟, where 𝑟 > 0, 
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 ∥ 𝑇Δ(𝜔) ∥≤∥ Δ0 ∥ +𝐿(∥ Δ ∥ +𝑡(𝑁1𝑘 +𝑁1ℎ) ∥ Δ ∥ +𝑁2𝑘 +𝑁2ℎ)) + 1−𝜈𝛽(𝜈) (𝑀1(∥ Δ ∥ +(𝐶𝑔+𝐶𝑓)𝜔 ∥ Δ ∥)) + 1−𝜈𝛽(𝜈)𝑀2 + 𝜈𝛽(𝜈) (𝑀1(∥ Δ ∥ +(𝐶𝑔+ 𝐶𝑓)𝜔 ∥ Δ ∥)( 𝐴𝐵𝐼0+𝜈 )(𝜔)) + 𝜈𝛽(𝜈)𝑀2( 𝐴𝐵𝐼0+𝜈 )(𝜔) 
≤∥ Δ0 ∥ +𝑈 ∥ Δ ∥ +𝑈((𝑁1𝑘 +𝑁1ℎ)𝜔 + 1 − 𝜈𝛽(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔) + 1𝜈𝛽(𝜈)Γ(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔)) ∥ Δ ∥ 

 +𝑈((𝑁1𝑘 +𝑁1ℎ)𝜔 + 1−𝜈𝛽(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔) + 1𝜈𝛽(𝜈)Γ(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔)) 
 ≤ 𝑟(1 − 2𝑈) + 2𝑈𝑟 

 ≤ 𝑟. 
 Now, for any Δ1 and Δ2 ∈ 𝐶[𝐽, 𝑋] 

 ∥ 𝑇Δ1(𝜔) − 𝑇Δ2(𝜔) ∥≤∥ Δ0 −𝐴(0,Δ1(0),0,0)+ 𝐴(𝜔, Δ1(𝜔),𝐾Δ1(𝜔),𝐻Δ1(𝜔)) 
 + 𝐴𝐵𝐼0+𝜈 𝐵(𝜔,Δ1(𝜔),𝐺Δ1(𝜔),𝐹Δ1(𝜔)) ∥ 
 +∥ Δ0 −𝐴(0,Δ2(0),0,0) + 𝐴(𝜔, Δ2(𝜔),𝐾Δ2(𝜔),𝐻Δ2(𝜔)) 
 + 𝐴𝐵𝐼0+𝜈 𝐵(𝜔,Δ2(𝜔),𝐺Δ2(𝜔),𝐹Δ2(𝜔)) ∥ 

 ≤ 𝐿(∥ Δ1− Δ2 ∥ +(𝑁1𝑘 +𝑁1ℎ)𝜔 ∥ Δ1− Δ2 ∥)+ 1−𝜈𝛽(𝜈) [𝑀(∥ Δ1− Δ2 ∥ 
 +(𝐶𝑔+ 𝐶𝑓)𝜔 ∥ Δ1− Δ2 ∥)] 
 + 𝜈𝛽(𝜈) [𝑀(∥ Δ1− Δ2 ∥ +(𝐶𝑔+ 𝐶𝑓)𝜔 ∥ Δ1− Δ2 ∥)]( 𝐴𝐵𝐼0+𝜈 1)(𝜔) 
 ≤ 𝑈 ∥ Δ1− Δ2 ∥ +𝑈((𝑁1𝑘+ 𝑁1ℎ)𝜔+ 1−𝜈𝛽(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔) 
 + 1𝜈𝛽(𝜈)Γ(𝜈) (1+ (𝐶𝑔 + 𝐶𝑓)𝜔)) ∥ Δ1− Δ2 ∥ 

 ≤ 2𝑈 ∥ Δ1− Δ2 ∥. 
 Since 𝑈 < 12, it follows that the operator 𝑇 is contraction on 𝐽. The application of Theorem 2.1gives the 

existence of a uniqueness of solution of the problem (1)-(2). This completes the proof. 

Theorem 3.2  Assume that the assumptions (A1)-(A7) are satisfied and 

 𝑞(𝜔2−𝜔1) = [𝑀(∥ Δ(𝜔2) − Δ(𝜔1) ∥ +(𝐶𝑔+ 𝐶𝑓)𝜔 ∥ Δ(𝜔2)− Δ(𝜔1) ∥)]. 
Then the problem (1)-(2) has at least one solution Δ(𝜔) on 𝐽.   
Proof.   Define two operators 𝑇1 and 𝑇2 on 𝐵𝑟0, where 𝑟0is an positive constant, as follows  

 (𝑇1Δ)(𝜔) = Δ0−𝐴(0,Δ(0),0,0)+ 𝐴(𝜔, Δ(𝜔),𝐾Δ(𝜔),𝐻Δ(𝜔)), (8) 

 (𝑇2Δ)(𝜔) = 𝐴𝐵𝐼0+𝜈 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)). (9) 

 Clearly, Δ is a mild solution of the problem (1)-(2) iff the equation Δ = (𝑇1+ 𝑇2)(Δ) has a solution Δ ∈ 𝐵𝑟. 
Therefore, the existence solution of the problem (1)-(2) is equivalent to determining a positive constant 𝑟0 , such that 𝑇1+ 𝑇2 has a fixed point on 𝐵𝑟0. 
The proof has been divided into four steps. 

Step 1.∥ 𝑇1Δ+ 𝑇2Δ ∥≤ 𝑟0 whenever Δ ∈ 𝐵𝑟0 . 
For every Δ ∈ 𝐵𝑟0, we have  

 ∥ (𝑇1Δ)(𝜔) + (𝑇2Δ)(𝜔) ∥≤∥ Δ0 ∥ +𝐿(∥ Δ ∥ +(𝜔)((𝑁1𝑘+𝑁1ℎ) ∥ Δ ∥ +𝑁2𝑘+ 𝑁2ℎ))+1−𝜈𝛽(𝜈) (𝑀1(∥ Δ ∥ +(𝐶𝑔+ 𝐶𝑓)𝜔 ∥ Δ ∥)) + 1−𝜈𝛽(𝜈)𝑀2+ 𝜈𝛽(𝜈) (𝑀1(∥ Δ ∥+(𝐶𝑔 + 𝐶𝑓)𝜔 ∥ Δ ∥))( 𝐴𝐵𝐼0+𝜈 )(𝜔) + 𝜈𝛽(𝜈)𝑀2( 𝐴𝐵𝐼0+𝜈 )(𝜔) 
 ≤∥ Δ0 ∥ +𝑈 ∥ Δ ∥ +𝑈((𝑁𝑘 +𝑁ℎ)𝜔 + 1−𝜈𝛽(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔) 
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 + 𝐼𝜈𝛽(𝜈)Γ(𝜈) (1+ (𝐶𝑔 + 𝐶𝑓)𝜔)) ∥ Δ ∥ +𝑈((𝑁𝑘+𝑁ℎ)𝜔 + 1−𝜈𝛽(𝜈) (1 + (𝐶𝑔+ 𝐶𝑓)𝜔) 
 + 𝐼𝜈𝛽(𝜈)Γ(𝜈) (1+ (𝐶𝑔 + 𝐶𝑓)𝜔)) 
 ≤ 𝑟0(1− 2𝑈) + 2𝑈𝑟0 
 ≤ 𝑟0 . 

 Hence, ∥ 𝑇1Δ+ 𝑇2Δ ∥≤ 𝑟0 for every Δ ∈ 𝐵𝑟0. 
Step 2. 𝑇1 is contraction on 𝐵𝑟0. 
If, for any Δ,Φ ∈ 𝐵𝑟0, according to (A5) and (8), we have  ∥ (𝑇1Δ)(𝜔) − (𝑇1Φ)(𝜔) ∥≤∥ Δ0−Φ0 ∥ +𝜄 ∥ Δ0−Φ0 ∥ +𝐿 ∥ Δ −Φ ∥ +𝐿(𝑁𝑘 +𝑁ℎ)𝜔 ∥ Δ −Φ ∥ 

 ≤∥ Δ0 −Φ0 ∥ (1 + 𝜄 + 𝐿 ∥ Δ −Φ ∥ +𝐿(𝑁𝑘 +𝑁ℎ)𝜔 ∥ Δ −Φ ∥) 
 ≤ 𝑅 ∥ Δ0−Φ0 ∥, 

 which implies that ∥ 𝑇1Δ− 𝑇1Φ ∥≤ 𝑅 ∥ Δ0−Φ0 ∥. Since 𝑅 < 1, where 𝑅 = 1 + 𝜄 + 𝐿 ∥ Δ −Φ ∥ +𝐿(𝑁𝑘 +𝑁ℎ)𝜔 ∥ Δ −Φ ∥, therefore 𝑇1 is a contraction. 

Step 3. 𝑇2 is completely continuous operator. 

Now, we will prove that 𝑇2 is continuous on 𝐵𝑟0. For any Δ𝑛, Δ ∈ 𝐵𝑟0, 𝑛 = 1,2, . .. with lim𝑛⟶∞ ∥ Δ𝑛 −Δ ∥= 0, we get lim𝑛⟶∞Δ𝑛(𝜔) = Δ(𝜔), for 𝜔 ∈ [0,1]. Thus, by (A1), we have  

 lim𝑛⟶∞𝐵(𝜔,Δ𝑛(𝜔),𝐺Δ𝑛(𝜔),𝐹Δ𝑛(𝜔)) = 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)), 
for 𝜔 ∈ [0,1]. 

So we conclude that  

 sup𝜔∈[0,1] ∥ 𝐵(𝜔,Δ𝑛(𝜔),𝐺Δ𝑛(𝜔),𝐹Δ𝑛(𝜔))− 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)) ∥⟶ 0as𝑛⟶ ∞. 
On other hand, for 𝑡 ∈ [0,1] 

 ∥ (𝑇2Δ𝑛)(𝜔) − (𝑇2Δ)(𝜔) ∥ 
 ≤ 1−𝜈𝛽(𝜈) sup𝜔∈[0,1] ∥ 𝐵(𝜔, Δ𝑛(𝜔),𝐺Δ𝑛(𝜔),𝐹Δ𝑛(𝜔))− 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)) ∥ 

 + 1𝜈𝛽(𝜈)Γ(𝜈) sup𝜔∈[0,1] ∥ 𝐵(𝜔,Δ𝑛(𝜔),𝐺Δ𝑛(𝜔),𝐹Δ𝑛(𝜔))− 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)) ∥ 

 ≤ (1−𝜈𝛽(𝜈)− 1𝜈𝛽(𝜈)Γ(𝜈)) sup𝜔∈[0,1] ∥ 𝐵(𝜔, Δ𝑛(𝜔),𝐺Δ𝑛(𝜔),𝐹Δ𝑛(𝜔)) − 𝐵(𝜔, Δ(𝜔),𝐺Δ(𝜔),𝐹Δ(𝜔)) ∥ 
 ⟶ 0as𝑛⟶ ∞. 𝑇2 is continuous on 𝐵𝑟0. 
Next, we have to prove that 𝑇2Δ,Δ ∈ 𝐵𝑟0 is relatively compact for which we prove it is uniformly 

bounded and equicontinuous. 

For any Δ ∈ 𝐵𝑟0 , we have ∥ 𝑇2Δ ∥≤ 𝑟0 , which means that (𝑇2Δ)(𝜔),Δ ∈ 𝐵𝑟0  is uniformly bounded. 

Next, we verify that (𝑇2Δ)(𝜔),Δ ∈ 𝐵𝑟0 is a equicontinuous. For any Δ ∈ 𝐵𝑟0 and 0 ≤ 𝜔1 ≤ 𝜔2 ≤ 𝜔, we get  

 ∥ (𝑇2Δ)(𝜔2)− (𝑇2Δ)(𝜔1) ∥≤ 1−𝜈𝛽(𝜈)𝑞(𝜔2 −𝜔1)+ 𝜈𝛽(𝜈)𝑞(𝜔2 −𝜔1) (𝜔2−𝜔1)𝜈𝜈Γ(𝜈)  

 ≤ (1−𝜈𝛽(𝜈)− (𝜔2−𝜔1)𝜈𝛽(𝜈)Γ(𝜈) )𝑞(𝜔2 −𝜔1) 
 ⟶ 0as𝜔2 ⟶𝜔1 , 

 which ⇒ 𝑇2 is a equicontinuous on 𝐵𝑟0.Thus, 𝑇2 is relatively compact and hence 𝑇2 is completely continuous. 

Step 4.  To conclude, the existence of the fixed point of the operator 𝑇 = 𝑇1+ 𝑇2, it sufficient to show 

that the set 𝜖 = {Φ ∈ 𝑋:Φ = 𝜆𝑇1(Φ𝜆) + 𝜆𝑇2(Φ)} is bounded. Let 𝜆 ∈ (0,1), then for each 𝜔 ∈ 𝐽, 
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 Δ(𝜔) = 𝜆𝑇1(Δ𝜆)+ 𝜆𝑇2(Δ)(𝜔), 
from (A1)–(A7), we have  

 ∥ Δ(𝜔) ∥≤ 𝜆 ∥ Δ0 ∥ −𝜆 ∥ 𝐴(0,𝑢𝜆 (0),0,0) ∥ +𝜆 ∥ 𝐴(𝜔, 𝑢𝜆 (𝜔),𝐾𝑢𝜆 (𝜔),𝐻𝑢𝜆 (𝜔)) ∥ 
 +𝜆 ∥ 𝐴𝐵𝐼0+𝜈 𝐵(𝜔,Δ(𝜔), 𝐺Δ(𝜔),𝐹Δ(𝜔)) ∥ 

 ≤∥ 𝜙 ∥ +𝐿(∥ Δ ∥ +(𝑁𝑘+ 𝑁ℎ)𝜔𝜓(∥ 𝑥 ∥) + (𝑁𝑘 +𝑁ℎ)𝜔) + ( 𝜈𝛽(𝜈) + 1𝜈𝛽(𝜈)Γ(𝜈))(𝑀(∥ Δ ∥ 
 +(𝐶𝑔+ 𝐶𝑓)𝜔𝜓(∥ Δ ∥) + (𝐶𝑔 + 𝐶𝑓)𝜔))+ ( 𝜈𝛽(𝜈) + 1𝜈𝛽(𝜈)Γ(𝜈))𝑀. 

 Put 𝜇(𝜔) = max{|Δ(𝑠)|:0 ≤ 𝑠 ≤ 𝜔},𝜔 ∈ 𝐽. Then ∥ Δ ∥≤ 𝜇(𝜔) for all 𝜔 ∈ 𝐽, and we have  

 𝜇(𝜔) ≤∥ 𝜙 ∥ +𝐿𝜇(𝑠)+ 𝐿(𝑁𝑘 +𝑁ℎ)𝜔𝜓(𝜇(𝑠)) + 𝐿(𝑁𝑘+𝑁ℎ)𝜔 + 𝜗∗𝜇(𝑠) 
 +𝜗∗(𝐶𝑔+ 𝐶𝑓)𝜔𝜓(𝜇(𝑠))+ 𝜗∗(𝐶𝑔 + 𝐶𝑓)𝜔+ 𝜗∗ 
 ≤∥ 𝜙 ∥ +𝜗∗ + (𝐿+ 𝜗∗)𝜇(𝑠) + 𝐿(𝑁𝑘 +𝑁ℎ)𝜔𝜓(𝜇(𝑠)) + 𝜗∗(𝐶𝑔 + 𝐶𝑓)𝜔𝜓(𝜇(𝑠)) 
 +𝐿(𝑁𝑘 +𝑁ℎ)𝜔 + 𝜗∗(𝐶𝑔+ 𝐶𝑓)𝜔 

 (1 − 𝐿 − 𝜗∗)𝜇(𝜔) ≤∥ 𝜙 ∥ +𝜗∗ + (𝐿(𝑁𝑘 +𝑁ℎ)𝜔 + 𝜗∗(𝐶𝑔+ 𝐶𝑓)𝜔)(𝜓(𝜇(𝑠))+ 1). 
 Consequently, if ∥ Δ ∥∞= sup ∥ Δ(𝜔) ∥:0 ≤ 𝜔 ≤ 1. Then above inequality becomes  

 (1− 𝐿 − 𝜗∗) ∥ Δ ∥∞≤∥ 𝜙 ∥ +𝜗∗ + (𝐿(𝑁𝑘+ 𝑁ℎ)𝜔+ 𝜗∗(𝐶𝑔+ 𝐶𝑓)𝜔)(𝜓(∥ Δ ∥∞)+ 1). 
i.e.  

 
(1−𝐿−𝜗∗)∥Δ∥∞∥𝜙∥+𝜗∗+(𝐿(𝑁𝑘+𝑁ℎ)𝜔+𝜗∗(𝐶𝑔+𝐶𝑓)𝜔)(𝜓∥Δ∥∞+1) ≤ 1. 

Then by (A7), there is an 𝑀∗ such that ∥ Δ ∥∞≠𝑀∗. Consider 𝑈 = {Δ ∈ 𝐶([0,1],𝑋): ∥ Δ ∥∞≤ 𝑀∗}, then in 𝑈 

there is no Δ ∈ 𝜕𝑈 such that Δ = 𝜆𝑇(Δ) where 𝜆 ∈ (0,1). We states that 𝑇  has a fixed point Δ in 𝑈 , which 

implies that Δ is a solution of (1)-(2), and the proof is completed. 

 

4. Conclusion 

The existence and uniqueness of solutions to the nonlinear term of fractional VFIDE with neutral and 

Atangana-Baleanu derivative in the Caputo sense were investigated in this work. Our findings expand and bring 

together many of the literary findings. This article contributed in particular to the growth of the fractional 

calculus with a generic formulation of a FD in respect of another function, in the FDE.The topic examined in this 

manuscript can be expanded to a greater extent by use of a generic formulation of the Hilfer FD. In addition, we 

focus on nonlinear fractional systems for VFIDE with nonlocal conditions. 
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