
Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

478

FPGA Implementation of Efficient VLSI Architecture of DLMS
Adaptive Filter Algorithm

1Gangadharaiah.S. L, 2Narayanappa C K, 3Nuthan Prasad V, 4Divya M. N,5Anirudha Rao

1 Research Scholar, VTU Research Centre, Dept. of E&C, M.S. Ramaiah Institute of Technology,

VTU, Belagavi, India.
2 Department of Medical Electronics, M.S. Ramaiah Institute of Technology, Bangalore, India.
3 Department of Electronics and Communication, M. S. Ramaiah Institute of Technology, Bengaluru, India.
4 Research Scholar, VTU Research Centre, Dept of Medical Electronics, M.S. Ramaiah Institute of

Technology, VTU,Belagavi, India.
5 PG Student,Department of Electronics and Communication, M. S. Ramaiah Institute of Technology,

Bengaluru, India.

ABSTRACT
In this Paper, an efficient implementation of the direct form of the least mean square (LMS) adaptive filter

algorithm is proposed. The conventional multiplier hinders the speed of the delayed LMS (DLMS) algorithm;

hence latest high speed Vedic Multiplier is used for its high convergence rate, further, the Vedic Multiplier is

explored for reducing the number of logic levels and timing levels, and possible reduction in logic delay. The

efficient adders are used in digital signal processing applications to reduce the power requirement, area and

delay. Vedic Multiplier and different adders (such as carry-increment, carry-look ahead, carry-select, ripple-
carry and carry-skip adder) used to implement the DLMS algorithm are compared (a) with ripple-carry adder

and vedic multiplier, (b) with vedic multiplier and carry-look ahead adder, (c) with Vedic multiplier and carry-

skip adder, (d) with Vedic multiplier and carry-increment adder, with (e) Vedic multiplier and carry-select

adder based on their delay. Xilinx ISE is used for simulation and synthesis of the design with Spartan-6 FPGA,

XC6SLX4-2TQG144.

Key Words: Vedic Multiplier, FPGA, DLMS Algorithm, Adaptive Filter

I. INTRODUCTION

Adaptive filters have a wide range of applications, mostly used for digital signal processing; the least mean

square algorithm provides better stability and faster convergence. Efficient architectures for higher-speed and

lower-complexity in implementation [1], [2], another, the (DLMS-AF) direct Least-Mean-Square adaptive

filter, has low register complexity and has critical path equivalent to that of transpose form but convergence is

faster. The efficient architecture of the LMS is capable to achieve lower adaptation-delay and area-delay-

power [2]. DLMS adaptive filter with and an efficient pipelined architecture and low-adaptation delay can be

realized to have better convergence performance, which can support high input sampling rates is discussed [3],

[4]. Using Vedic Math, an 8-bit multiplier can generate the partial products [5]. Adders are necessary part of

Digital Signal Processing (DSP) [6]. The (DLMS) adaptive filter can reduce the register complexity, it can

support the faster convergence, very small adaptation delay and no pipelining approach is necessary. Zero

adaptation delay DLMS algorithm provides better performance as compared to other algorithms, Zero

adaptation delay DLMS algorithm requires minimum (EPS) energy per given sample and also in comparison

to other designs minimum area. The DLMS algorithm can also be used for cancellation of interference in

electroencephalogram (EEG) applications [10]. There are various proposed methods to implement the LMS

adaptive algorithm and its variants, also these methods can be used widely for applications in digital signal

processing, a few of them have been mentioned here. The multiplier block used for the LMS algorithm can

also be replaced by the Distributed Arithmetic (DA) as the multiplier causes bottleneck, the Distributed

Arithmetic makes use of the memory that store Partial Products (PPs) to emulate multiplication [14]. The

approximate distributed arithmetic (DA) circuits can be used to create a fixed-point finite impulse response
adaptive filter. Reduction in the number of partial products in the DA architecture is achieved with the radix-8

Booth algorithm [16]. The distributed arithmetic (DA) can be used to create VLSI architecture of LMS

adaptive filtering algorithm, The DA is used for the serial bit computations. In DA ‘two’ separate LUT’s are

used for storing the partial products of the input sample and filter coefficients and then follows access and

summation of the entries, LUTs are multiplexed to improve performance [30]. In the architecture of the DA

complexity of structures can be reduced by implementing combinations of the offset-binary coding (OBC) of

input samples on hardware, some non-OBC outputs which are produced during the initial clock cycles, will be

subsequently eliminated in the error computation [31]. DA based low complexity pipelined least-mean-square

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

479

filter is realized by combining 2 adaptive-filters the step-sizes of combined Adaptive filters is used to adjust

the convergence performance, here the 2 ADF’s are replaced by one single DA based ADF [32]. Odd

multiples have symmetricity between them and hence using an adder tree, offset terms are added. For higher
word length to generate the odd multiples, only a few adders are required, and a single offset adder tree is

adequate. Super-latch is used to pipeline adaptation delays of the LUT-less multiplier and the pipelined LMS

ADF [33]. Block least-mean-square adaptive filter (BLMS-ADF) is one of the variants of the LMS ADF,

partial add-store (PAS) and partial store-add (PSA) method is used to create two partial LUT designs for

BLMS-ADF, the PAS method provides shorter critical path as compared to PSA [34]. A novel approximate,

low-power implementation of the coefficients update block can be used for updating the coefficients of the

weight update block of the LMS adaptive filter algorithm [15]. The LMS algorithm has a third-order statistical

feature known as skewness [22]. High frequency noise and low frequency noise can be removed from ECG

signal using ANC-ADF (active noise cancellation adaptive filter) [23],[24],[26],[27]. The (LMS) adaptive

algorithm has the capability to reduce the effect of acoustic feedback of the public address system

[12],[17],[19],[24],[26],[27].Least mean square algorithm is popular due to its robust nature [7], there are

many variants of least mean square algorithm, whose framework is based on logarithmic number system such

as least mean logarithmic square (LMLS) and least logarithmic absolute difference (LLAD), and are used to

stabilize or improve convergence performance of adaptive algorithms through relative cost functions [7],[13].

Another variant of the LMS algorithm is the Pt-NLMS which is used for the sparse system identification, has

application in the echo cancellation [8], [19],[24],[26],[27],[28]. Even though Pt-NLMS is very efficient, to

simplify the original Pt-NLMS algorithm, it requires several reformulations, making them amenable to real-

time VLSI implementations [8],[9]. There are various variants of the proportionate type adaptive filtering

algorithms and their VLSI architectures that can be used for sparse system identification under impulsive

noise, these variants can also be used for noise cancellation, [9], [19], [24], [26], [27]. Though when there is

Non Gaussian noise, Least Mean Fourth (LMF) adaptive filter is superior to LMS algorithm, it has stability

issues of low signal to noise ratio, which can be overcome by combining LMF algorithm with LMS algorithm

and can be used for a sparse system identification, [7],[11],[19]. Apart from LMS algorithm there is one more
very widely used algorithm for the identification of the unknown systems known as the recursive least square

algorithm RLS [20],[24],[26],[27]. To improve the performance of the algorithm and solve the contradiction

between the convergence speed and the steady-state error, a novel variable step length can be used for the

LMS adaptive filtering algorithm [21]. There are many other variants of the LMS algorithm such as the

multisplit time varying LMS algorithm (MS TVLMS) and multisplit LMS (MS LMS) algorithm [28] and

affine combination of two LMS adaptive filters also there is the algorithm of reduced complexity parallel LMS

(RC-pLMS) [29].

II. PROPOSED METHOD

The Least Mean Square algorithm does not support the pipelined architecture neither to improve convergence

nor reduce the delay, hence the Delayed Least Mean Square adaptive algorithm is used. The adaptive filter

coefficients need continuous updating to reduce difference of filter output to desired response. To implement

DLMS algorithm, the error is estimated, it is next used to update filter weights for each sampling period. The

error is estimated using difference of desired response and the filter output. Weight update of the DLMS

adaptive filter takes place according to the equations given below:

Weight Update, (Wn+ 1) = Wn + Xin * µ * E (1)

The Weight update Equation is used to reduce the difference of desired response to filter output.

where, Wn+ 1is new weight and W is previous Weight

 Xin is the input andµ the step size(0< µ < 1) and E is the Error Signal.

Filter Output, Y = Xin * Wn+𝑅 (2)

where, Y is Filter Output, Xin is the input,

 Wn is previous Weight andR is the Register value used for correction of error,

R is used for the
 Note: Initially R value is 0

Error Calculation, E=D-Y (3)

Where, E is Error Signal, D is Desired Response and Yis the Filter Output.

The Least mean square algorithm conventional block diagram is as shown below in Figure 1.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

480

Figure 1. General block diagram of Least mean square algorithm.

In case of pipelined architectures if there are m stages of pipelined architecture, then after the completion of

the m cycles of the pipeline, the error En becomes available, where ‘m’ represents the delay required for the

adaptation. The Delayed error is used by the DLMS algorithm in such cases will be En−m, i.e., for the weight

update operation the error being used is not the recent error but (n-m)th iteration error.

The formula for which follows is as follows:

Weight update for Pipelined architecture, Wn+ 1 = Wn + Xn-m * µ * En-m (4)

In the conventional Least mean square (LMS) filter, the adaptation delay comprises of two parts:

1st, is pipelined stages of the Finite impulse Response (FIR), which introduces the delay and 2nd is Weight

update process delay caused by pipelining.

The Direct form of the Least mean Square adaptive filter algorithm (DLMS) can be implemented based on

such delay decomposition; the Direct form of the LMS adaptive filter algorithm (DLMS) is implemented as

shown in Figure. 2. The Error Computation Latency is assumed to be n1 number of cycles, after the

completion of the nth cycle the error is computed, it is represented by En−n1. The input samples are also delayed
by n1 number of clock cycles and they are used along with the n1 clock cycles delayed error and the new

weight generation takes place, the n1 clock cycles delayed input samples is represented by Xn−n1. The weight-

update, Error Calculation, Filter Output equation for the DLMS algorithm, is as shown below in equations

(5),equations (6) and equations (7):

Weight update for DLMS, Wn+1 = Wn + μ*En−n1*Xn−n1 (5)

Error calculation for DLMS, En−n1 = Dn−n1 – Yn−n1 (6)

Filter Output, Yn = Wn−n2 *Xn+𝑅 (7)

The implementation of Direct Form of the FIR filter realization is used, since all weights gets updated

simultaneously to generate the output.

The direct form of LMS adaptive filter performs computation of inner product, done to generate the output of

the filter; hence it is assumed that it has a longer critical path as the arithmetic operation can begin only if all

the input operand values are available.

Figure 2. Block diagram of DLM

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

481

III. RESEARCH METHOD

In this section, we discuss efficient implementation of zero-adaptation delay filter using high speed Vedic

multiplier and VLSI architectureof efficient adders.

2.1 Zero Adaptation Delay (ZAD) filter

The ZAD Filter has 2 main blocks which are used for the computations, 1st block shown in Figure. 3 is for

computation of error and 2nd block shown in Figure. 4 is for updating the weights. When we consider these

blocks separately, we will discover many such components which require large amount of area, these are the

common components in both blocks, and these components include registers, adders, multipliers, delay flip-

flops and subtractor.
The subtractor and adders which are being used in these two blocks are different, the computations of these

two blocks needs to be performed in the same cycle to implement the zero-adaptation delay. The error

computation and weight update cannot occur concurrently since the zero-adaptation delay is not having the

pipelined architecture. To decrease the delay, multiplexers are used to multiplex the multiplications of both

these blocks. We use the high speed vedic multipliers here to decrease the delay. For both these phases same

registers are used. In the 1st half cycle error computation is performed and in the 2nd weight update is

performed.

Figure 3. Error update Block of the DLMS filter Figure 4. Weight update Block of the DLMS filter

In the zero-adaptation delay, using the tapped delay line, the input (Xn) samples are driven into the multipliers.

While in “N” number of registers the Weight values stored. Multiplication operation takes place between the

weight values and the input samples and they are given to the adder tree block where they get added, output of

adder tree in turn then gets subtracted from the desired response, the error generated is pushed into the “N” 2:1

mux as input. The output of the multiplier needs to be moved either towards the weight update block or

towards the adder tree block. To move the product value to either of the two blocks we require “N” 2:1 demux.

The “N” number of multiplexers and demultiplexers are controlled by a clock signal. Registers are clocked at

rising edge and will stay clocked for entire period. Multiplexers are used to feed coefficients present in the

registers into the multipliers, this is done during each clock-period in the 1st half. The adder tree receives the

product from the demultiplexers, using the adder tree the output of the filter is generated. The output of adder

tree i.e., filter output is then subtracted from the desired response which generates the error value. The Step

size gets multiplied to the error value, this product is then multiplied to the input samples and the product
value gets generated, this product is transmitted to each adder in weight update block where they get added

with the previous weight values. A delay is inserted after the calculation of the product of step size and error

value as it reduces register width. The Weights get updated after which the output of the filter is regenerated, it

is used to recalculate the error. The time required for computation of error is more as compared to the weight

updating.

2.2Multiplier and adders

The important components in the above-mentioned structure is the adders and multiplier block. To optimize

the above-mentioned architecture, we focus of adder and multiplier block. The implementations of the adder

and multiplier requires a large chip area, the delay is increased and even the power consumption gets

increased.

So, to reduce the delay and power consumption, advanced multipliers and adders are required which can

satisfy the above-mentioned requirements. There are many High-speed multipliers and adders which can

replace the conventional adder and multiplier blocks. Some of the examples of multipliers are Vedic

multiplier, array multiplier, Wallace tree multiplier etc. similarly some examples for the adders are ripple-

carry, carry-look-ahead, carry-skip, carry-increment and carry-select adders. From the above-mentioned

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

482

multipliers, Vedic multiplier is the most effective and efficient multiplier in terms of delay and consumption of

area.The ancient Indian scriptures also known as the Vedas was used to create the Vedic multiplier by Swami

Bharati Krishna Tirthaji Maharaja. The Vedic multiplier is based on sutras which basically are 16-word
formulae. Vedic math is integrated with the digital signal processing to increase the speed of multiplication

process.The architecture of the Vedic multiplier is based on the algorithm, the Urdhva Tiryagbhyam sutra.The

4-bit multiplications operation is done by the Urdhva Tiryagbhyam sutra in one single logic level or one single

line, whereas the conventional method needs to add four different partial products to get the result.The number

of steps needed to calculate the output of a multiplier is reduced in Vedic multiplier as compared to

conventional multiplier, this also improves and increases the speed of the product generation.8-bit Vedic

multiplier is implemented using the equations 8-15 given below.

p_0 = b_0 * a_0 (8)

p_1 = b_1 * a_0 + b_0 * a_1 (9)

p_2 = b_1 *a_1 + b_0 * a _2 + b_2 *a_0 + b_0 * a_0 * b_1 * a_1 (10)

p_3 = P2 carry bit + b_1 * a_2 + b_0 * a_3 + b_2 & a_1 + b_3 * a_0 (11)

p_4 = P3 carry bit + P2 carry bit + b_1 * a_3 + b_2 * a_2 + b_3 * a_1(12)

p_5 = P4 carry bit + P3 carry bit + b_2 * a_3 + b_3 * a_2 (13)

p_6 = P4 carry bit +b_3 * a_3 + b_1 * b_2 * a_1 * a_2 (14)

p_7 = P6 carry bit (15)

The 8-bit Vedic multiplier shown in Figure. 5is constructed from four, 4-bit Vedic multipliers and three, 8-bit

adder blocks, adder-1, adder-2, adder-3. Figure 5 below shows 8-bit Vedic multiplier block diagram.

Figure 5. Block diagram of 8x8 Vedic Multiplier
Addition is the most important operation used in digital signal processing. There are several efficient adder

blocks which can replace the conventional adder to perform the addition operation in digital signal processing,

some examples of these adders are ripple-carry-ripple, carry-skip, carry-look ahead, carry-select, carry-

increment adder etc., every adder has its own advantages and some drawbacks. The first adder which can

replace the adder blocks mentioned in the architecture of the DLMS adaptive filter is the ripple carry adder

shown in Figure 6.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

483

Figure 6. Block diagram of Ripple carry adder

The carry-look-ahead adder is used to generate the carry and propagate the carry bit given in equation 16 and

equation 17 , there are 2 functions in the carry-look-ahead adder, one is to propagate the bit and other to

generate the bit. The generate bit’s purpose is to generate the carry no matter what the value of Ci and

propagate bit’s function is to propagate the carry bit.Carry bit Equation is shown in equation 18.

Generate bit Equation: G_i=X_i*Y_i (16)

Propagate bit Equation: P_i =Y_i + X_i (17)

Carry bit Equation: C_i+1 = (C_i*P_i) +G_i (18)

Due to independent calculation of carry bit carry look ahead adder is faster as compared to the ripple carry

adder, but the hardware required increase. The Figure 7 shown below is the architecture of carry-look-ahead

adder.

Figure 7. Block diagram of carry look ahead adder.

Carry-skip-adder shown in Figure. 8 uses skip logic to propagate carry bit, this helps in increasing the speed of

addition operation. The propagated carry bit is added to the entire adder.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

484

Figure 8. Block diagram of carry skip adder.

The carry-select adder shown in Figure. 9 is made up of ripple-carry adders and multiplexer, the 2 ripple carry

adders get cin as input one of them gets cin as 0 and one receives cin as 1, the mux is used to decide the correct

carry out and the correct sum and then provide them as output as soon as the correct carry is known. The

multiplexers increase the complexity, but the delay gets reduced.

Figure 9. Block diagram of carry select adder

The carry-increment adder shown in Figure10 is created using ripple-carry adder along with the increment

logic block. The increment adder logic is created using the half adders in a sequential chain as in the ripple

carry adder, the total number of bits are divided in a group of 2 of 4 bits each and the addition operation is

done using the 4-bit Ripple carry adders.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

485

Figure 10. Block diagram of carry Increment adder

III. RESULTS AND DISCUSSION

For Proof of concept, POC we have run the DLMS algorithm equations in python version 3. “65025”

Iterations have been run to check the functionality of the filter and also to check its convergence rate and the

bit error rate (BER). We are able to achieve an ideal result wherein output of a filter exactly matches desired

response. The below Figure 11 is the graph which shows the corrected filter output and desired response.The

functionality is validated using the Test bench written in Verilog HDL.

Figure 11.Graph representing the desired response DR and Corrected output

The graphs compare the Desired Response (DR) and Corrected filter output (Corrected_op). Both graphs are

represent demonstrate the filter’s accuracy is increased, the BER is reduced and it gives the filter output i.e.,

Corrected output (Corrected_op) which is equivalent to the Desired response (DR), here we have considered

the step size or µ as 1/𝑋2, here the X in the denominator is nothing but our input signal, the error considered

for the estimation of weight update is recent most calculated error, when we update the weight using the

equation (5), it gets reduced to equation (19) and due to this we get the corrected output within one iteration.

New update weight equation, (Wn+1) = Wn+ En-n1/Xn-n1 (19)

The DLMS adaptive filter module is simulated and synthesized using Xilinx Project Navigator.

0

75

150

225

300

1 3 5 7 9 11 13 15 17 19

DLMS algorithm

DR Corrected_op

0

75

150

225

300

1 3 5 7 9 11 13 15 17 19

DLMS algorithm

DR Corrected_op

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

486

3.1 Simulation Result of 8 Bit Vedic Multiplier

Figure 12.Simulation results of 8-bit Vedic multiplier

The Input signal is multiplied with the weight to obtain the filter output and to perform that multiplication

operation in the DLMS algorithm 8-bit high speed Vedic multiplier has been used, in the aboveFigure 12, ‘a

and b’ are the inputs to the multiplier and ‘p’ is the product output.

3.2 Simulation Result of 16 Bit Adders

Figure 13.Simulation results of 16-bit Adders – (RCA, CLA, CSA, CSpA & CIA)

For the weight update we need to add the previous weight to the product of input signal, error and the step size

and for the addition purpose we used carry-look-ahead, ripple-carry, carry-skip, carry-select, and, carry-

increment efficient adders. Figure 13 is the simulation result for all the adders of 16 bit, in the above image
figure 13, ‘a’ and ‘b’ are the inputs and‘s’ are the sum output.

3.3 Simulation Result of DLMS algorithm using the 8-bit Vedic multiplier and 16-bit adders

Figure 14.Simulation results of DLMS algorithm – (using Vedic - multiplier, RCA, CLA, CSA, CSpA & CIA – adders)

The above Figure 14, ‘X’ represents the input signal with noise, ‘D’ represents the desired response, ‘W’

represents the initial weights, ‘Y’ represents the filter output which we obtained after taking product of input

‘X’ and weight ‘W’. ‘E’, represents the Error signal which we obtain after subtracting the filter output ‘Y’
from desired response ‘D’. The obtained error signal is then divided by input and added to previous weight to

generate the new weight ‘Wn’. When we perform the division operation if it’s not divisible exactly, we will
get some decimal values which cannot be represented in Verilog and hence we store the modulus of error

signal ‘E’ and the input signal ‘X’ in a register R. The new filter output ‘Yn’ is generated by multiplying the

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

487

new weight ‘Wn’ to the input signal ‘X’ and also adding the register value for error correction purpose. Hence,

we get the new filter output ‘Yn’ equivalent to the desired response (this concept has been tried on 255*255

iterations with different random input values and we got the same result for all the iterations).The Xilinx ISE is
used for design and Spartan-6 FPGA for synthesis, with XC6SLX4-2TQG144 and the timing summary for 8-

bit Vedic multiplier, 16-bit adders and the DLMS algorithms are mentioned in the tables below.Table 1

summarizes the timing summary of different multipliers used in the DLMS Adaptive Filter algorithm.

3.4 Timing summary of 8-bit Vedic multiplier

Table 1: Timing summary of different multipliers

Multiplier type Modified 8-bit

Vedic multiplier

Normal 8-bit

Vedic multiplier

8-bit array

multiplier

8-bit Wallace tree

multiplier

Total delay 15ns 17.4ns 17.5ns 15.9ns

Logic level 11 13 13 12

3.5 Timing summary of 16-bit adders

Table 2 summarizes the timing summary of different adders used in the DLMS Adaptive Filter algorithm.

Table 2: Timing summary of 16-bit adders.

Name of adder CIA CSA CLA RCA CSPA

Time delay in

(ns)

4.72 5.88 6.2 7.308 6.72

3.6 Timing summary of DLMS algorithm with 8-bit vedic multiplier and 16-bit adders

Table 3 summarizes the timing summary of DLMS Adaptive Filter algorithm using different adders and

multipliers.

Table 3: Timing summary of DLMS algorithm

DLMS

adaptive filter

using

Vedic & CIA Vedic & CSA Vedic & CLA Vedic & RCA Vedic &

CSPA

Conventional

adder and

multiplier

Time delay in

(ns)

23.711 24.091 23.484 23.817 23.670 27.16

IV. CONCLUSION

Table1 represents the timing summary of the various multipliers, the modified Vedic multiplier provides less

delay compared to the other multipliers, Table 2 represents the timing summary of various adders, carry
increment adder provides less delay as compared to other adders. The implementation of the DLMS algorithm

using the Vedic multiplier and carry-look-ahead adder provides least delay compared to other combinations of

adders and multipliers the comparison has been made with the conventional adder and multiplier and is more

efficient implementation of the DLMS algorithm which also provides the corrected filter output for 65,025

different combinations of input iterations, it is more efficient as it converges faster as compared to the

conventional multiplier and adder architecture.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

488

ACKNOWLEGDEMENTS

The authors with utmost gratitude express special thanks to the Professors, Principal and mentors who were
always available and made time to provide insight and guidance in the research. The research and the

successful completion of the paperwork has been possible for all the facilities extended to us by our institute.

REFERENCES

1. Meher, Pramod Kumar, and Sang Yoon Park. "Critical-path analysis and low-complexity implementation of the LMS

adaptive algorithm." IEEE Transactions on Circuits and Systems I: Regular Papers 61.3 (2013): 778-788.
2. Meher, Pramod Kumar, and Sang Yoon Park. "Area-delay-power efficient fixed-point LMS adaptive filter with low

adaptation-delay." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22.2 (2013): 362-371.

3. Meher, Pramod Kumar, and Sang Yoon Park. "Low adaptation-delay LMS adaptive filter part-II: An optimized
architecture." 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS) . IEEE, 2011.

4. Meher, Pramod K., and Megha Maheshwari. "A high-speed FIR adaptive filter architecture using a modified delayed
LMS algorithm." 2011 IEEE International Symposium of Circuits and Systems (ISCAS) . IEEE, 2011.

5. Premananda, B. S., et al. "Design and implementation of 8-bit Vedic multiplier." International Journal of Advanced

Research in Electrical, Electronics and Instrumentation Engineering 2.12 (2013): 5877-5882.

6. Kaur, Jasbir, and Lalit Sood. "Comparison between various types of adder topologies." IJCST 6.1 (2015): 62-66.

7. Mula, Subrahmanyam, Vinay Chakravarthi Gogineni, and Anindya Sundar Dhar. "Algorithm and architecture design

of adaptive filters with error nonlinearities." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 25.9
(2017): 2588-2601.

8. Mula, Subrahmanyam, Vinay Chakravarthi Gogineni, and Anindya Sundar Dhar. "Algorithm and VLSI architecture
design of proportionate-type LMS adaptive filters for sparse system identification." IEEE Transactions on Very

Large Scale Integration (VLSI) Systems 26.9 (2018): 1750-1762.
9. Mula, Subrahmanyam, Vinay Chakravarthi Gogineni, and Anindya Sundar Dhar. "Robust proportionate adaptive

filter architectures under impulsive noise." IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27.5

(2019): 1223-1227.
10. Prakash, D. M. Realization of Delayed Least Mean Square Adaptive algorithm using Verilog HDL for EEG signals.

Diss. 2016.
11. Bashir, Murwan, and Azzedine Zerguine. "Transform domain LMF algorithm for sparse system identification under

low SNR." 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, 2015.
12. Reas, Roxcella T. "Performance Evaluation Of A Low Order LMS Based Adaptive Feedback Canceller For Public

Address System." 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information
Technology, Communication and Control, Environment, and Management (HNICEM) . IEEE, 2020.

13. Sayin, Muhammed O., N. Denizcan Vanli, and Suleyman Serdar Kozat. "A novel family of adaptive filtering

algorithms based on the logarithmic cost." IEEE Transactions on signal processing 62.17 (2014): 4411-4424.
14. Ahmad, Shawez, et al. "A Novel Multiplier-less LMS Adaptive Filter Design based on Offset Binary Coded

Distributed Arithmetic." IEEE Access 2021.
15. Di Meo, Gennaro, et al. "Low-power Implementation of LMS Adaptive Filters Using Scalable Rounding." 2020 27th

IEEE International Conference on Electronics, Circuits and Systems (ICECS) . IEEE, 2020.
16. Jiang, Honglan, et al. "A high-performance and energy-efficient FIR adaptive filter using approximate distributed

arithmetic circuits." IEEE Transactions on Circuits and Systems I: Regular Papers 66.1 (2018): 313-326.

17. Ghmati, Tarek S., and Abeer AS Elhoula. "Adaptive Digital FIR Filters: Case Study: Noise Cancellation using LMS
Algorithm." Albahit journal of applied sciences 2.1 (2021): 30-36.

18. J. Zeng, Y. Lin, and L. Shi, “A robust quantized kernel least mean square algorithm based on the arctangent cost
function in impulsive interference,” J. Comput. Inf. Syst., vol. 11, no. 15, pp. 5553–5560, Aug. 2015

19. Paleologu, Constantin, Jacob Benesty, and Silviu Ciochina. "Sparse adaptive filters for echo cancellation." Synthesis
Lectures on Speech and Audio Processing 6.1 (2010): 1-124.

20. Tajdari, Teimour. "ADAPTIVE METHOD TO PREDICT AND TRACK UNKNOWN SYSTEM BEHAVIORS
USING RLS AND LMS ALGORITHMS." Facta Universitatis, Series: Electronics and Energetics 34.1 (2021): 133-

140.

21. Liu, Duo, Hao Cha, and Binbin Wang. "A Novel Variable step length LMS Algorithm based on Arctangent
Compound Function." 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control

Conference (IAEAC). Vol. 5. IEEE, 2021.
22. Silva, Thiago TP, et al. "On the Skewness of the LMS Adaptive Weights." IEEE Transactions on Circuits and

Systems II: Express Briefs 2021.
23. Prajapati, Priyank H., and Anand D. Darji. "Two Stage Step-size Scaler Adaptive Filter Design for ECG Denoising."

2021 IEEE International Symposium on Circuits and Systems (ISCAS) . IEEE, 2021.
24. VATANSEVER, Fahri. "NOISE CANCELLATION WITH LMS VARIANTS." Uludağ University Journal of The

Faculty of Engineering 26.1 2021: 153-170.

25. Kher, Rahul. "IJERT-Performance Analysis of Multisplit Time Varying LMS Algorithm." 2021
26. Gogineni, Vinay Chakravarthi, and Subrahmanyam Mula. "Improved proportionate-type sparse adaptive filtering

under maximum correntropy criterion in impulsive noise environments." Digital Signal Processing 79 (2018): 190-
198.

Turkish Journal of Computer and Mathematics Education Vol.12 No.14 (2021), 478-489

Research Article

489

27. Ma, Wentao, et al. "Robust proportionate adaptive filter based on maximum correntropy criterion for sparse system
identification in impulsive noise environments." Signal, Image and Video Processing 12.1 (2018): 117-124.

28. Wagner, Kevin, and Miloš Doroslovački. Proportionate type normalized least mean square algorithms. ISTE, 2013.
29. Akkad, Ghattas, et al. "Stability Analysis of the RC-PLMS Adaptive Beamformer Using a Simple Transfer Function

Approximation." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021.

30. S. R. B, G. S. L and N. C K, "FPGA based Optimized LMS Adaptive Filter using Distributed Arithmetic," 2018 3rd

IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology

(RTEICT), 2018, pp. 1863-1867, doi: 10.1109/RTEICT42901.2018.9012288

31 M. T. Khan and R. A. Shaik, "Optimal Complexity Architectures for Pipelined Distributed Arithmetic-Based
LMS Adaptive Filter," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 630-6

642, Feb. 2019, doi: 10.1109/TCSI.2018.2867291.

32. Khan, Mohd Tasleem, Rafi Ahamed Shaik, and Surya Prakash Matcha, "Improved convergent

distributedarithmetic based low complexity pipelined least-mean-square filter." IET Circuits, Devices &
Systems 12.6 (2018): 792-801.

33. R. K. Sarma, M. T. Khan, R. A. Shaik and J. Hazarika, "A Novel Time-Shared and LUT-Less Pipelined Architecture

for LMS Adaptive Filter," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 1, pp.

188-197, Jan. 2020, doi: 10.1109/TVLSI.2019.2935399

34. Khan, Mohd Tasleem,"Partial-LUT Designs for Low-Complexity Realization of DA-based BLMS Adaptive

Filter." IEEE Transactions on Circuits and Systems II: Express Briefs (2020).

BIOGRAPHIES OF AUTHORS

Gangadharaiah S. L completed B.E. in Electronics and CommunicationEngineering

from Kuvempu University in 1997, M. Tech. in Digital Electronics and Advanced

Communication from KREC, Surathkal in 2002. Currently, he is pursuing Ph.D. in the
area of VLSI signal processing under VTU, Belgaum. Presently he is working as

Assistant Professor in the Department of Electronics & Communication Engineering,

M. S Ramaiah Institute of Technology, Bengaluru, since 2002. His areas of interest are

Analog VLSI,Digital VLSI,VLSI Signal Processing and Machine Learning.

Narayanappa C. K received Ph.D. from Visvesvaraya Technological University,

Belagavi in2014 and M.Tech in Biomedical Instrumentation from Mysore University in

1996. He iscurrently working asAssociate Professor at department of Medical

Electronics, M. S.

RamaiahInstituteofTechnology,Bengalurusince2000.HisresearchinterestsincludeSignal&I

mageprocessing and Control Systems. He is the member of ISTE, IETE and BMESI. He

is also afellowatTheInstitutionofEngineers (India).

V.Nuthan Prasad completedhisB.E. in Electronics and

CommunicationEngineeringfromVisvesvarayaTechnologicalUniversityin2003,M.Tech.in

DigitalElectronicsandCommunication from Visvesvaraya Technological University in

2006. Currently he is pursuinghis Ph.D. in Antenna design. Presently he is working as

Assistant Professor in the Department of Electronics & Communication Engineering, M.

S. Ramaiah Institute of Technology, Bengaluru His areas of interest are Information

Theory and Coding, AntennaDesign, SignalProcessingand Machine Learning.

Divya M.N completed her B.E. in Electronics and Communication Engineering from

Bangalore University in 2001, Masters in Electronics from VTU Belgaum in 2007. She
is currently pursuing a Ph.D. in Aerospace Electronics under VTU, Belgaum.

Presently she is working as Assistant Professor in the school of Electronics &

Communication Engineering, Reva University Bengaluru, since 2011. Her areas of

interest are Aerospace Electronics, Signal Processing and Machine Learning.

Anirudha Rao Completed B.E. in Electronics and Communication Engineering from

Mumbai University. He is presently pursuing M. Tech in Digital Electronics and

Communication at M. S. Ramaiah Institute of Technology, Bengaluru.

	2.1 Zero Adaptation Delay (ZAD) filter
	2.2Multiplier and adders
	3.1 Simulation Result of 8 Bit Vedic Multiplier
	3.2 Simulation Result of 16 Bit Adders
	3.3 Simulation Result of DLMS algorithm using the 8-bit Vedic multiplier and 16-bit adders
	3.4 Timing summary of 8-bit Vedic multiplier
	3.5 Timing summary of 16-bit adders
	3.6 Timing summary of DLMS algorithm with 8-bit vedic multiplier and 16-bit adders

