Perfect Dominating sets and Perfect Domination Polynomial of Some Standard Graphs

A.M. Anto ${ }^{1}$ andP. Paul Hawkins ${ }^{2}$

${ }^{1}$ Assistant Professor,Department of Mathematics,Malankara Catholic College, Mariagiri, Tamil Nadu, India.antoalexam@ gmail.com
${ }^{2}$ Research Scholar,Reg.no 18223112091013 ,Research Department of Mathematics,
Nesamony Memorial Christian College, Marthandam, Tamil Nadu, India. hawkinspaul007@gmail.com Affiliated to ManonmaniamSundaranar University,
Abishekapatti, Tirunelveli - 627012,Tamilnadu,India.

Abstract

The paper illustrates algebraic representation of the friendship Graph F_{n} and corona of G and K_{1} called the Perfect dominating polynomial. The Perfect dominating polynomial is constructed by using Perfect dominating set. At first we find the family Perfect dominating set with the given cardinality. The collection of families of sets become the coefficient of novel Perfect dominating polynomial. The relations which gets identified with this on coefficients helps to develop the Perfect dominating polynomial of F_{n} and $G \circ K_{1}$ thus we find the rootsof this polynomial.

Keyword: Perfect Dominating set, Friendship Graph, Polynomial,Corona
2010 Mathematics Subject Classification: 05C31,05

1. Introduction

Let $G=(V, E)$ be a simple graph of order $|V|=n$. For any vertex $u \in V$, the open neighborhood of u is the set $N(u)=\{v \in V \mid u v \in E\}$. A set $S \subseteq V$ is a dominating set of G, if every vertex $u \in V$ is a element of S or is adjacent to an element of S [7].The dominating set S is a perfect dominating set if $|N(u) \cap S|=1$ for each $u \in V-S[7]$, or equivalently, if every vertex u in $V-S$ is adjacent to exactly one vertex in S. The Perfect domination number $\gamma_{p f}$ is the minimum cardinality of a Perfect dominating set in G. The Friendship Graph F_{n} is constructed by joining n copies of the cycle C_{3} with a common vertex [4]. The corona $G_{1} \circ G_{2}$ is obtained by taking one copy of G_{1} and $\left|G_{1}\right|$ copies of G_{2}, and by joining each vertex of the $\mathrm{i}^{\text {th }}$ copy of G_{2} to the $i^{\text {th }}$ vertex of $G_{i}, i=1,2, \ldots,\left|G_{1}\right|[8]$. Let $D_{p f}(G, i)$ be the family of all Perfect dominating sets of G with cardinality i, and let $d_{p f}(G, i)=\left|D_{p f}(G, i)\right|$ then
$D_{p f}(G, x)=\sum_{\gamma_{p f}(G)}^{|V(G)|} d_{p f}(G, i) x^{i_{i s}}$ called the Perfect dominating polynomial of G.The roots of the polynomialis obtained byequate the given polynomial to zero and the roots are called the solutions for the given polynomial.

2.Perfect Dominating Polynomial of a Friendship Graph $\boldsymbol{F}_{\boldsymbol{n}}$

We denote the family of Perfect dominating sets of the Friendship Graph F_{n} with cardinality i by $D_{p f}\left(F_{n}, i\right)$.
Then the Perfect dominating sets of the Friendship Graph F_{n} is investigated as follows;

Definition 2.1

Let F_{n} be a Friendship Graph with $2 n+1$ vertices and $D_{p f}\left(F_{n}, i\right)$ be the family of Perfect dominating sets of the Friendship Graph F_{n} with cardinality i then, $d_{p f}\left(F_{n}, i\right)=\left|D_{p f}\left(F_{n}, i\right)\right|$.

Example 2.2

Consider the following Friendship Graph F_{3} in Figure1

Figure:1

Here, the Perfect dominating set of cardinality one is $\left\{v_{7}\right\}$

The Perfect dominating set of cardinality two is $\}$
The Perfect dominating set of cardinality three is $\left\{\left\{v_{1}, v_{2}, v_{7}\right\},\left\{v_{3}, v_{4}, v_{7}\right\},\left\{v_{5}, v_{6}, v_{7}\right\}\right\}$
The Perfect dominating set of cardinality four is $\}$
The Perfect dominating set of cardinality five is $\left\{\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}\right\},\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{7}\right\},\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}\right\}$
The Perfect dominating set of cardinality six is $\}$
The Perfect dominating set of cardinality seven is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$
Therefore, $\quad d_{p f}\left(F_{3}, 1\right)=1, d_{p f}\left(F_{3}, 2\right)=0, d_{p f}\left(F_{3}, 3\right)=3, d_{p f}\left(F_{3}, 4\right)=0, d_{p f}\left(F_{3}, 5\right)=3, d_{p f}\left(F_{3}, 6\right)=$ $0, d_{p f}\left(F_{3}, 7\right)=1$.

Lemma 2.3

$d_{p f}\left(F_{1}, 1\right)=3$

Proof

By the definition a friendship graph F_{1} has 3 vertices and 3 edges. We know that, F_{n} is constructed by joining n copies of the cycle C_{3} with a common vertex. Thus, we conclude that F_{1} is a cycle with 3 vertices. Therefore every vertex in F_{1} Perfectly dominates all the other two vertices in F_{1} and we get $\left.\mid D_{p f}\left(F_{1}, 1\right)\right) \mid=3$. Hence, $d_{p f}\left(F_{1}, 1\right)=3$.

Theorem 2.4

Let F_{n} be a Friendship Graph with $2 n+1$ vertices then, $d_{p f}\left(F_{n}, 1\right)=1$ for $n \geq 2$

Proof

As the Graph F_{n} can be constructed by joining n copies of the cycle C_{3} with a common vertex, which is the only vertex that Perfectly dominates all other vertex of F_{n} for $n \geq 2$.Therefore, $d_{p f}\left(F_{n}, 1\right)=1$ for $n \geq 2$

Lemma 2.5

$\gamma_{p f}\left(F_{n}\right)=1$
Lemma 2.6
Let F_{n} be the Friendship graph with $2 n+1$ vertices and for all $n \geq 2 d_{p f}\left(F_{n}, i\right)=\left\{\begin{array}{cc}\binom{n}{\left(\frac{i-1}{2}\right)} & \text { for } i=1,3,5,7, \ldots, 2 n+1 \\ 0 & \text { otherwise }\end{array}\right.$

Proof

Let F_{n} be the Friendship graph with $2 n+1$ vertices and $3 n$ edges.Since the Perfect dominating Set of the Friendship Graph F_{n} with cardinality i is obtained by choosing $\frac{i-1}{2}$ copies of the cycle C_{3} that joins with a common vertex from n copies of the cycle C_{3} joining with a common vertex, which is $\binom{n}{\left(\frac{i-1}{2}\right)}$ Possible ways. Therefore, $d_{p f}\left(F_{n}, i\right)=\left\{\begin{array}{cc}\binom{n}{\left(\frac{i-1}{2}\right)} & \text { for } i=1,3,5,7, \ldots, 2 n+1 \\ 0 & \text { otherwise }\end{array}\right.$

Definition 2.7

If F_{n} be a Friendship Graph with $2 n+1$ vertices then $D_{p f}\left(F_{n}, x\right)=\sum_{i=1}^{2 n+1} d_{p f}\left(F_{n}, i\right) x^{i}$ is called the Perfect Dominating Polynomial of F_{n}

Theorem 2.8

Let F_{1} be a Friendship Graph with 3 vertices then the Perfect dominating Polynomial of F_{1} is given by $D_{p f}\left(F_{1}, x\right)=3 x+x^{3}$

Proof

Since, F_{1} is a complete graph with 3 vertices then we have, $D_{p f}\left(F_{1}, x\right)=3 x+x^{3}$

Theorem 2.9

Let F_{n} be a Friendship Graph with $2 n+1$ vertices then the Perfect dominating Polynomial $D_{p f}\left(F_{n}, x\right)=$ $x\left(1+x^{2}\right)^{n}$ for $n \geq 2$

Proof

Given F_{n} be a Friendship Graph with $2 n+1$ vertices .We have $D_{p f}\left(F_{n}, x\right)=\sum_{i=1}^{2 n+1} d_{p f}\left(F_{n}, i\right) x^{i}$

Then by lemma 2.6 we get $D_{p f}\left(F_{n}, x\right)=\binom{n}{0} x+\binom{n}{1} x^{3}+\cdots+\binom{n}{n} x^{2 n+1}=x\left(1+\binom{n}{1} x^{2}+\binom{n}{2}\left(x^{2}\right)^{2}+\cdots+\right.$ $\left.\binom{n}{n}\left(x^{2}\right)^{n}\right)=x\left(1+x^{2}\right)^{n}$

Example 2.10

We find the Perfect dominating polynomial F_{3}, From Example 2.2 we haved $d_{p f}\left(F_{3}, 1\right)=1, d_{p f}\left(F_{3}, 2\right)=$ $0, d_{p f}\left(F_{3}, 3\right)=3, d_{p f}\left(F_{3}, 4\right)=0, d_{p f}\left(F_{3}, 5\right)=3, d_{p f}\left(F_{3}, 6\right)=0, d_{p f}\left(F_{3}, 7\right)=1$.
Then by definition $2.7 D_{p f}\left(F_{3}, x\right)=x+3 x^{3}+3 x^{5}+x^{7}$
By Theorem 2.9we have, $D_{p f}\left(F_{3}, x\right)=x\left(1+x^{2}\right)^{3}=x\left(1+3 x^{2}+3 x^{4}+x^{6}\right)=x+3 x^{3}+3 x^{5}+x^{7}$

Theorem 2.11

The Perfect dominating roots of the friendship Graph F_{n} are given by 0 and $\pm i$ (n times).

Proof

The Perfect dominating Polynomial of a Friendship graph with n vertices is given by $D_{p f}\left(F_{n}, x\right)=x\left(1+x^{2}\right)^{n}$
To find the roots of this polynomial put $D_{p f}\left(F_{n}, x\right)=0$.
ie) $x\left(1+x^{2}\right)^{n}=0 \Rightarrow x=0$ or $\left(1+x^{2}\right)^{n}=0$
$\Rightarrow x=0$ or $= \pm i(n$ times $)$

3. Perfect Dominating Polynomial of $G \circ K_{1}$ Definition 3.1

Let G be a Simple graphof order n and $D_{p f}\left(G \circ K_{1}, i\right)$ is a family of perfect dominating set with cardinality i and $d_{p f}\left(G \circ K_{1}, i\right)=\left|D_{p f}\left(G \circ K_{1}, i\right)\right|$ then $\quad D_{p f}\left(G \circ K_{1}, x\right)=\sum_{i=n}^{2 n} d_{p f}\left(G \circ K_{1}, i\right) x^{i} \quad$ is \quad a perfect \quad dominating polynomial of $G \circ K_{1}$.

Theorem 3.2

Let G be a Simple graph of order n then, $d_{p f}\left(G \circ K_{1}, i\right)=0$ if $i<n$

Theorem 3.3

Let G be a Graph with n vertices then $\gamma_{p f}\left(G \circ K_{1}\right)=n$

Proof

Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of G and we add n new vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ to G and join v_{i} to u_{i} for all $i, 1 \leq i \leq n$ to obtain $G \circ K_{1}$. Let D be a Perfect dominating set of G then $|D| \leq n$ here we have two cases if $|D|<n$ then $\left|N\left(v_{i}\right) \cap D\right| \neq 1$ for some $i, 1 \leq i \leq n$, therefore D is not a perfect dominating set of $G \circ K_{1}$.If $|D|=n \quad$ then $D=V(G) \quad$ and $\left|N\left(v_{i}\right) \cap D\right|=1$ for every $i, 1 \leq i \leq n$. therefore, $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a Perfect dominating set of G o K_{1}. Hence, $\gamma_{p f}\left(G \circ K_{1}\right)=n$

Theorem 3.4

Let G be a graph of order n then, $d_{p f}\left(G \circ K_{1}, n\right)=2$

Proof

We take $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V^{\prime}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the set of n vertices and join v_{i} to u_{i} for all $i, 1 \leq i \leq n$ to obtain $G \circ K_{1}$. Let D be a family of perfect dominating set cardinality n of $G \circ K_{1}$ First we claim there is no perfect dominating sets belongs to D with the combination of vertices $V(G)$ and $V^{\prime}(G)$. If not Suppose $V_{1} \in D$ and vertices of V_{1} belongs to $V(G)$ and $V^{\prime}(G)$ then, $\left|N\left(u_{i}\right) \cap D\right| \neq 1$ for some $i, 1 \leq i \leq$ n.Which contradicts to the definition of perfect dominating Set. Hence, there is no perfect dominating sets belongs to D with the combination of vertices $V(G)$ and $V^{\prime}(G)$.But, for the set $V(G)$ which is a dominating set also $\left|N\left(v_{i}\right) \cap V(G)\right|=1$ for all $i, 1 \leq i \leq n$ and $V^{\prime}(G)$ is also a dominating set and $\left|N\left(u_{i}\right) \cap V^{\prime}(G)\right|=$ 1 for all $i, 1 \leq i \leq n$. Therefore, $V(G), V^{\prime}(G) \in D$. Hence, $d_{p f}\left(G \circ K_{1}, n\right)=|D|=2$.

Theorem 3.5

Let G be a graph of order n and for every m where $n<m \leq 2 n$ we have $d_{p f}\left(G \circ K_{1}, m\right)=\binom{n}{m-n}$.

Proof

Let G be a graph of order n and D is a Perfect dominating Set of $G \circ K_{1}$ with size m where $n<m \leq 2 n$ then $|D \cap V(G)|=i$ for $1 \leq i \leq n$. With out loss of generality Suppose that $V(G) \cap D=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Since, D is a

Perfect dominating set with size m then, D contains some $v_{i}, v_{i+1} \ldots, v_{n}$ vertices. Hence, for finding the dominating set D we have to extend $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ to $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{i}, v_{i+1} \ldots, v_{n}\right\}$. Which is of $\binom{n}{i}$ possibilities therefore $d_{p f}\left(G \circ K_{1}, m\right)=\binom{n}{m-n}$ for $n<m \leq 2 n$.

Theorem 3.6

Let G be a graph of order n then $D_{p f}\left(G \circ K_{1}, x\right)=x^{n}\left[1+\left(1+x^{n}\right)^{n}\right]$

Proof

We have $D_{p f}\left(G \circ K_{1}, x\right)=\sum_{i=n}^{2 n} d_{p f}\left(G \circ K_{1}, i\right) x^{i}$ that is $D_{p f}\left(G \circ K_{1}, x\right)=d_{p f}\left(G \circ K_{1}, n\right) x^{n}+d_{p f}\left(G \circ K_{1}, n+\right.$ 1) $x^{n+1}+\cdots+d_{p f}\left(G \circ K_{1}, 2 n\right) x^{2 n}$. By using Theorem $3.4 \&$ Theorem 3.5 we get $D_{p f}\left(G \circ K_{1}, x\right)=2 x^{n}+$ $\binom{n}{1} x^{n+1}+\binom{n}{2} x^{n+2}+\cdots+\binom{n}{n-1} x^{n+(n-1)}+\binom{n}{n} x^{2 n} .=2 x^{n}+x^{n}(1+x)^{n}-x^{n} .=x^{n}\left[1+(1+x)^{n}\right]$

Example 3.7

Consider a graph G of order 4 then the corona of two graphs G and K_{1} is $G \circ K_{1}$ has 8 vertices
Hence, by a Theorem 3.6 we have $D_{p f}\left(G \circ K_{1}, x\right)=x^{4}\left[1+(1+x)^{4}\right]$

$$
\begin{aligned}
& =x^{4}\left[1+\left(1+4 x+6 x^{2}+4 x^{3}+x^{4}\right)\right] \\
& =x^{4}\left[2+4 x+6 x^{2}+4 x^{3}+x^{4}\right] \\
& =2 x^{4}+4 x^{5}+6 x^{6}+4 x^{7}+x^{8}
\end{aligned}
$$

Theorem 3.8

The Perfect dominating roots of $G \circ K_{1}$ are 0 and $\left[\cos \frac{(2 k+1) \pi}{n}+i \sin \frac{(2 k+1) \pi}{n}\right]-1, k=0,1,2, \ldots, n-1$.

Proof

The Perfect dominating Polynomial of a $G \circ K_{1}$ with $2 n$ vertices is given by $D_{p f}\left(G \circ K_{1}, x\right)=x^{n}[1+(1+$ $\left.x)^{n}\right]$.To find the roots of this polynomial put $D_{p f}\left(G \circ K_{1}, x\right)=0$ therefore, $x^{n}\left[1+(1+x)^{n}\right]=0 \Rightarrow x^{n}=0$ or $1+(1+x)^{n}=0$.Now, $(1+x)^{n}=-1 \Rightarrow(1+x)^{n}=1(\cos \pi+i \sin \pi) \Rightarrow 1+x=1^{\frac{1}{n}}(\cos \pi+i \sin \pi)^{\frac{1}{n}} \Rightarrow$ $x=\left[\cos \frac{(2 k+1) \pi}{n}+i \sin \frac{(2 k+1) \pi}{n}\right]-1, k=0,1,2, \ldots, n-1$. Therefore, the Perfect dominating roots of $G \circ K_{1}$ are $0(n$ times $)$ and $\left[\cos \frac{(2 k+1) \pi}{n}+i \sin \frac{(2 k+1) \pi}{n}\right]-1, k=0,1,2, \ldots, n-1$.

Example 3.9

Let G be a graph of order 2 we have to find the Perfect dominating roots of $G \circ K_{1}$. By the previous theorem if G is a graph of order n then $0(n$ times $)$ and $\left[\cos \frac{(2 k+1) \pi}{n}+i \sin \frac{(2 k+1) \pi}{n}\right]-1, k=0,1,2, \ldots, n-1$ are the Perfect dominating roots of the polynomial. Put $n=2$ we get $0(2$ times $)$ and $\left[\cos \frac{(2 k+1) \pi}{2}+i \sin \frac{(2 k+1) \pi}{2}\right]-1, k=0,1$ that is $0(2$ times $)$ and $\left[\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right]-1,\left[\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right]-1$,therefore $0(2$ times $)$ and $-1,-i-1$ are the required Perfect dominating roots of the Graph.

4. Conclusions

The paper sums up the findings of how perfect dominating polynomial of a Friendship Graph and $G \circ K_{1}$ is structured up by Perfect dominating set and also how this polynomialsobtain its roots.

Acknowledgement

I express my deep sense of gratitude to my Lord, the Almighty for his Mercy and Grace, which I have received bountifully. I owe my deep sense of gratitude and profound thankfulness to my respectable Research guide and Colleagues.

References

[1] A.M Anto, P.Paul Hawkins and T Shyla Isac Mary, Perfect Dominating Sets and Perfect Dominating Polynomial of a Cycle, Advances in Mathematics: Scientific Journal, 8(3)(2019), 538-543.
[2] A.M Anto, P.Paul Hawkins and T Shyla Isac Mary, Perfect Dominating Sets and Perfect Dominating Polynomial of a Path, International Journal of Advanced Science and Technology, 28(16)(2010), 1226-1236
[3] Bondy J.A, Murthy. U.S.R., Graph theory with applications, Elsevier Science Publishing Co, sixth printing, 1984
[4] Gallian, J. A, "Dynamic Survey DS6: Graph Labeling" Electronic Journal of Combinatorics, DS6, 1-58
[5] Gray Chartand, Ping Zhang, 2005, Introduction to graph theory, McGraw Hill, Higher Education
[6] S. Alikhani and Y.H. Peng, Introduction to Domination polynomial of a graph, arXiv: 0905.225 [v] [math.co] 14 may (2009)
[7] T.W.Haynes, S.T.Hedetniemi, and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Newyork(1998)
[8] Y. N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math., 135 (1994) 359365

