Research Article

Fair Dominating sets and Fair domination polynomial of a Wheel graph

S. Durai Raj¹,Ligi E Preshiba²

¹AssociateProfessor and Principal, Department of Mathematics, Pioneer Kumaraswami College, Nagercoil- 629003, Tamil Nadu, India.

² Research Scholar, Reg No:19213132092005, Department of Mathematics, Pioneer Kumaraswami College, Nagercoil - 629003, Tamil Nadu, India

Affiliated to ManonmaniamSundaranarUniversity, Abishekapatti, Tirunelveli – 627012,Tamilnadu, India. ¹ Email: durairajsprincepkc@gmail.com² Email: Ligipreshiba@gmail.com

ABSTRACT

Let G = (V, E) be a simple graph. A set $S \subseteq V$ is a fairdominating set of G, if every vertex not in S is adjacent to one or more vertices in S. A dominating set S of G is a fair dominating set if every two vertices $u, v \in V(G) - S$ are dominated by same number of vertices from S. The minimum cardinality taken over all fair dominating sets in G is called the fair domination number of G and is denoted by $\gamma_f(G)$. Let $W_{1,n}$ be wheel graph of order n + 1. Let $W_{1,n}^i$ be the family of all fair dominating sets of a wheel $W_{1,n}$ with cardinality i, and let $d_f(W_{1,n}, i) = |W_{1,n}^i|$. In this paper, we explore the fair domination polynomial of a wheel graph and also more properties are obtained in it.

Keywords:dominating sets, domination polynomial, fair dominating sets, fair domination polynomial. Subject Classification Number: AMS-05C05, 05C.

1. Introduction

Consider G = (V, E) be a simple, finite and undirected graph, where |V(G)| = n denotes the number of vertices and |E(G)| = m denotes the number of edges of G. For any undefined term in this paper we refer Harary[9].

A set $S \subseteq V(G)$ is a dominating set if every vertex not in S is adjacent to one or more vertices in S. The minimum cardinality taken over all dominating sets in G is called domination number of G and is called the domination number of G and is denoted by $\gamma(G)$. For complete review on the theory of domination and its related parameters we refer [10] and [11].

A dominating set *S* is a fair dominating set if every two vertices $u, v \in V(G) - S$ are dominated by the same number of vertices from *S*. The minimum cardinality taken over all fair dominating sets in *G* is called the fair domination number of *G* and is denoted by $\gamma_f(G)$. the concept of fair domination was first introduced by Yar Coro et al [6]. For more details on fair domination we refer [7].

A domination polynomial of a graph *G* is the polynomial $D(G, x) = \sum_{i=1}^{n} d(G, i) x^{i}$, where d(G, i) is the number of dominating sets of *G* of cardinality *i*. For more details on domination polynomial we refer [3], [4] and [5].

Analogously, a fair domination polynomial of a graph G of order n is the polynomial $D_f(G, x) = \sum_{i=\gamma_f(G)}^n d_f(G, i) x^i$, where $d_f(G, i)$ is the number of fair dominating sets of G of cardinality *i*.

An element a is said to be a zero of a polynomial f(x) if f(x) = 0. An element a is called zero of a polynomial of multiplicity m if $\binom{(x-a)^m}{f(x)}$ and $(x-a)^{m+1}$ is not

a divisor of f(x).

The number of distinct subsets with *r* vertices that can be selected from a set with *n* vertices is denoted by $\binom{n}{r}$ or $nC_r = \frac{n!}{(n-r)!r!}$. This number $\binom{n}{r}$ is called a binomial coefficient.

Let $W_{1,n}^i$ be the family offair dominating sets of a wheel graph $W_{1,n}$ of cardinality *i*, and let $d_f(W_{1,n}, i) = |W_{1,n}^i|$. We call the polynomial $D_f(W_{1,n}, x) = \sum_{i=1 \text{ or } \gamma_f(G)}^n d_f(W_{1,n}, i) x^i$ the fair domination polynomial of wheel. Similarly the fair domination polynomial of star graph $S_{1,n}$ and cycle graph $C_n \operatorname{are} D_f(S_{1,n}, x)$ and $D_f(C_n, x)$ respectively.

2. FairDominating sets of Wheel graph $(W_{1,n})$

Let $W_{1,n}, n \ge 3$ be the wheel graph with n + 1 vertices $V(W_{1,n}) = \{0, 1, 2, ..., n\}$ and $E(W_{1,n}) = \{(0,1), (0,2), (0,3), ..., (0,n), (1,2), (2,3), (3,4), ..., (n-1,n), (n,1)\}.$

In this section, we investigate dominating sets of wheels.

To prove our main results we need the following lemma:

Lemma: 2.1

For any cycle graph C_n with n vertices,

- i. $d_f(C_n, i) = 0$ if $1 < \left[\frac{n}{3}\right] + 1$ or i > n.
- ii. $d_f(C_n, n) = 1$
- iii. $d_f(C_n, n-1) = n$
- iv. $d_f(C_n, n-2) = \binom{n}{2}$.

Theorem:2.2

For $n \ge 3$, a wheel graph $W_{1,3n}$ may not have a fair dominating set of cardinality n + 2.

Proof:

Consider $W_{1,3n}$ where $n \ge 3$. We shall find a fair dominating set S of cardinality n + 2 in $W_{1,3n}$. Since $n + 2 < \lfloor \frac{n}{2} \rfloor$, not every element in $V(W_{1,n}) - S$ are independent. Then $V(W_{1,n}) - S$ contains at least two adjacent vertices. Since S is a fair dominating set of $W_{1,n}$, that $V(W_{1,n}) - S$ does not contain more than two adjacent vertices. We consider the following two cases:

Case (i): If every vertices in $V(W_{1,n}) - S$ forms induced union of path P_2 . Then it is clear that S contains exactly (n + 1) – vertices. Hence this case fails.

Case (ii): If every vertices in $V(W_{1,n}) - S$ need not forms induced union of path P_2 . This means that $V(W_{1,n}) - S$ contains an induced path P_1 . Assume v be the vertex of P_1 . Then the vertices adjacent to v in $V(W_{1,n}) - S$ is dominated by three vertices of S and the remaining vertices in $V(W_{1,n}) - S$ are dominated by two vertices of S. So that S is not a fair dominating set.

Hence we cannot find a fair dominating set of cardinality n + 2 for a wheel graph $W_{1,3n}$ for $n \ge 3$.

Theorem: 2.3

For $n \ge 9$, a wheel graph $W_{1,n}$ not every power of x exists in a fair domination polynomial.

Proof:

Consider a wheel graph $W_{1,3n}$ with $n \ge 9$ vertices. By Theorem 2.2, a wheel graph $W_{1,n}$ may not have a fair dominating set of particular cardinality. Hence the result follows.

Theorem: 2.4

For i = 1 or $\gamma_f(C_n) \le i \ne n \le n + 1$, where $n \ge 5$, every centre vertex of $W_{1,n}$ lies in every fair dominating set of $W_{1,n}$ of cardinality *i*.

Proof:

Let v be a centre vertex of $W_{1,n}$ and let S be a fair dominating set of $W_{1,n}$ of cardinality i. To prove $r \in S$. If i = 1, then there is nothing to prove. Now assume $\gamma_f(C_n) \leq i \neq n \leq n+1$. Suppose $v \notin S$. Then $v \in V(W_{1,n}) - S$ has n neighbours in S. Since $i \neq n$, there exists a vertex v_j in C_n such that $v_j \notin S$. Clearly v_j has atmost three neighbours in $V(W_{1,n})$. Therefore v has atleast i neighbours in S and v_j has at most two neighbor vertices in S. Since $n \geq 5$, that $\gamma_f(C_n) \geq 3$ and so $i \geq 3$. It follows that S is not a fair dominating set of $W_{1,n}$. Hence, $v \in S$.

Theorem: 2.5

Let $W_{1,n}$ be a wheel graph with $n \ge 4$ vertices. Then $d_f(W_{1,n}, i) \le d_f(S_{1,n}, i) + d_f(C_n, i)$ for all i.

Proof:

Let $S_{1,n}$ be the star graph on n + 1 vertices and let $v \in V(S_{1,n})$ be the centre vertex of $S_{1,n}$. Clearly $S_{1,n}$ be a spanning subgraph of $W_{1,n}$. Also $W_{1,n} - \{v\} = C_n$. Show that $W_{1,n} = S_{1,n} \cup C_n$. Therefore the number of dominating sets of $W_{1,n}$ with cardinality i is the sum of the number of dominating sets of $S_{1,n}$ with cardinality i and the number of dominating set of C_n with cardinality i. But in case of fair dominating sets, by theorem:2.2, $W_{1,n}$ does not have a fair dominating set of particular cardinality. Also by theorem:2.4, v lies on every fair dominating sets of $W_{1,n}$ for i = 1 or $\gamma_f(C_n) \le i \ne n \le n + 1$. Therefore $d_f(W_{1,n}, i) \le d_f(S_{1,n}, i) + d_f(C_n, i)$ for $i < \gamma_f(C_n)$, $d_f(C_n, i) = 0$ and so $d_f(W_{1,n}, i) \le d_f(S_{1,n}, i)$. For i = n, it is clear that $d_f(W_{1,n}, n) = n + 1$. Also $d_f(S_{1,n}, n) = n + 1$ and $d_f(C_n, n) = 1$. Hence, for all $i, d_f(W_{1,n}, i) \le d_f(S_{1,n}, i) + d_f(C_n, i)$.

Theorem: 2.6

For $n \ge 5$ and $1 < i \le \gamma_f(C_n)$, there does not exists a fair dominating set of cardinality *i*.

Proof:

Let $n \ge 5$ and $1 < i \le \gamma_f(C_n)$. Suppose there is a fair dominating set cardinality *i*. Let *v* be the certre vertex of $W_{1,n}$. We consider two cases:

Case (i) $v \in S$. Then by the choise of *S*, we choose i - 1 vertices of *S* from $V(C_n)$. Since $i \leq \gamma_f(C_n)$, that i - 1 vertices of C_n need not dominates every vertices in C_n . This shows that some vertices in $V(W_{1,n}) - S$ adjacent to these i - 1 vertices are dominated by at most three vertices in *S* and not adjacent to these i - 1 vertices are dominated by at most three vertices in *S* and not adjacent to these i - 1 vertices are dominated by at most three vertices in *S* and not adjacent to these i - 1 vertices are dominated by at most two vertices in *S*. So *S* is not a fair dominating set of $W_{1,n}$.

Case (ii) $v \notin S$. In this case the remaining n - i vertices in C_n are dominated by at most two vertices in S or not dominated by any vertex of S and the vertex v is dominated by i vertices of S. Since $i \ge 2$, again that S is not a fair dominating set of $W_{1,n}$.

Hence there cannot be a fair dominating set of $W_{1,n}$ of cardinality ifor $1 < i \leq \gamma_f(C_n)$.

Theorem: 2.7

Let $W_{1,n}$, $n \ge 5$ be the wheel graph with $V(W_{1,n}) = n + 1$. Then,

i.	$d_f(W_{1,n}, i) = 1$ if $i = 1$.
ii.	$d_f(W_{1,n}, i) = 0$ if $1 < i < \left[\frac{n}{3}\right] + 1$ or $i > n + 1$.
iii.	$d_f(W_{1,n},i) = d_f(\mathcal{C}_n,i-1)$ if $\left[\frac{n}{3}\right] + 1 < i \neq n \le n+1.$
iv.	$d_f(W_{1,n}, i) = 1 + d_f(C_n, i - 1)$ if $i = n$.

Proof:

Let v be a centre vertex of $W_{1,n}$.

i. For i = 1, it is clear that the centre vertex $\{v\}$ is the unique fair dominating set of cardinality *i*. Therefore, $d_f(W_{1,n}, i) = 1$ if i = 1.

ii. Let $1 < i < \left[\frac{n}{3}\right] + 1$ or i > n + 1.

The fair domination number of any cycle graph C_n , $n \ge 5$ is obtained as

$$\gamma_f(C_n) = \begin{cases} \left\lceil \frac{n}{3} \right\rceil & if \ n \equiv 0 \ or \ 1(mod3) \\ \left\lceil \frac{n}{3} \right\rceil + 1 \ if \ n \equiv 2 \ (mod3) \end{cases}$$

If $1 < i < \gamma_f(C_n)$, then by theorem:6, we have, $d_f(W_{1,n}, i) = 0$. Moreover, there does not exist a fair dominating set of cardinality greater than n + 1. Thus $d_f(W_{1,n}, i) = 0$ if $1 < i < \left\lfloor \frac{n}{3} \right\rfloor + 1$ or i > n + 1.

iii. Now, let $\left|\frac{n}{3}\right| + 1 < i \neq n \leq n + 1$. Then by Theorem(4) v belongs to every fair dominating set of $W_{1,n}$. Let S be a fair dominating set of cardinality *i*. Since the remaining i - 1 vertices of S for dominates the vertices of C_n , every fair dominating set of $W_{1,n}$ of cardinality *i* contains the vertices which fair dominates the cycle C_n and $\{v\}$. Thus, if S' be a fair dominating set of C_n of cardinality i - 1, then that $S = S' \cup \{v\}$. Therefore, $d_f(W_{1,n}, i) = d_f(C_n, i - 1)$.

iv. Further if i = n, then $d_f(W_{1,n}, i)$ contains a fair dominating set S of cardinality *i* with $v \notin S$. Therefore the number of fair dominating set of $W_{1,n}$ of cardinality *i* is one greater than the number of fair dominating set of C_n of cardinality i - 1.

Hence $d_f(W_{1,n}, i) = 1 + d_f(C_n, i-1)$ if i = n.

Theorem: 2.8

Let $W_{1,n}$, $n \ge 3$ be the wheel graph with $|V(W_{1,n})| = n + 1$. Then the following properties are hold:

- i. For $n \ge 3$, $d_f(W_{1,n}, n+1) = 1$.
- ii. For $n \ge 3$, $d_f(W_{1,n}, n) = n + 1$.
- iii. For $n \ge 4$, $d_f(W_{1,n}, n-1) = \frac{n(n-1)}{2}$.
- iv. For $k \ge 2$, $d_f(W_{1,3k}, k+1) = 3$.
- v. For $n \ge 3$, $d_f(W_{1,3k}, k+2) = 0$.
- vi. For $n \ge 3$, $d_f(W_{1,3k+1}, k+2) = 3k+1$.
- vii. For $k \ge 3$, $d_f(W_{1,3k+2}, k+3) = 6k + 4$
- viii. $d_f(W_{1,n}, i)$ is always a positive integer.

Proof

- i. For any graph G with n + 1 vertices. We have $d_f(G, n + 1) = 1$. Hence $d_f(W_{1,n}, n + 1) = 1$.
- ii. For any graph G with n + 1 vertices, and $\delta(G) \ge 1$, then we have $d_f(G, n) = 1$. Hence $d_f(W_{1,n}, n) = n + 1$.
- iii. By lemma: 1, we have $d_f(C_n, n-2) = \binom{n}{2}$. Therefore by Theorem: 2.7, we conclude $d_f(W_{1,n}, n-1) = \binom{n}{2} = \frac{n(n-1)}{2}$.
- iv. Consider the wheel graph $W_{1,3k}$, where $k \ge 2$. Then it has 3k + 1 vertices. The fair dominating sets of $W_{1,3k}$ of cardinality k + 1 are $\{1,4,7, ..., 3k 2\}, \{2,5,8, ..., 3k 1\}$ and $\{3,6,9, ..., 3k\}$. Therefore we have 3 fair dominating sets of $W_{1,3k}$ of cardinality k + 1.
- Hence $d_f(W_{1,3k}, k+1) = 3$.
- v. This follow from Theorem:2.2.
- vi. Consider the wheel graph $W_{1,3k+1}$. Then it has 3k + 2 vertices. The fair dominating set of $W_{1,3k+1}$ of cardinality k + 2 are $\{1,2,5, ..., 3k 1\}$, $\{2,3,6, ..., 3k\}$, $\{3,4,7, ..., 3k + 1\}$, $..., \{3k + 1,1,4,7, ..., 3k 2\}$. Therefore we have 3k + 1 fair dominating sets of $W_{1,3k+1}$ cardinality k + 2. Hence $d_f(W_{1,3k+1}, k + 2) = 3k + 1$.
- vii. Consider the wheel graph $W_{1,3k+2}$. Then it has 3k + 3 vertices. The fair dominating sets of $W_{1,3k+2}$ of cardinality k + 3 are $\{1,2,5,6,9,...,3k\}, \{2,3,6,7,...,3k+1\}, \{3,4,7,8,...,3k+2\}, ..., \{3k+2,1,4,5,8,...,3k-1\}$
 - $\begin{array}{l} (1,2,3,6,9,\ldots,3k), \{2,3,4,7,10,\ldots,3k+1\}, \{3,4,5,8,11,\ldots,3k+2\}, \ldots, \{3k+1,3k+2,1,4,7,\ldots,3k-2\}. \end{array}$

Therefore we have 3k + 2 + 3k + 2 fair dominating sets of cardinality k + 3. Hence $d_f(W_{1,3k+2}, k + 3) = 3k + 2 + 3k + 2 = 6k + 4$.

viii. Clearly $d_f(W_{1,n}, i)$ is the cardinality of total collection of fair dominating sets of cardinality*i*. Hence $d_f(W_{1,n}, i)$ has to be a positive integer including zero.

3. Fair DominationPolynomial of a Wheel graph.

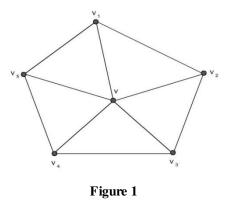
In this section we introduced and investigate the fair domination polynomial of wheels.

Definition: 3.1

Let $W_{1,n}^i$ be the family of fair dominating sets of a wheel graph $W_{1,n}$ with cardinality *i* and let $d_f(W_{1,n},i) = |W_{1,n}^i|$. Then the domination polynomial $D_f(W_{1,n},x)$ of $W_{1,n}$ is defined as $D_f(W_{1,n},x) = \sum_{i=1}^n or_{Y_f(W_{1,n})} d_f(W_{1,n},i) x^i$.

Example: 3.2

Consider the wheel graph $W_{1,5}$ in figure 1.



 $W_{1,5}$

Here $W_{1,5}^1 = \{v\}$ and so $d_f(W_{1,5}, 1) = 1$.

Now, $W_{1,5}^2 = \phi$. Therefore $d_f(W_{1,5}, 2) = 0$

Also, $W_{1,5}^3 = \phi$. Therefore $d_f(W_{1,5}, 3) = 0$

Here, $W_{1,5}^4 = \{\{v_1, v_3, v_4, v\}, \{v_2, v_4, v_5, v\}, \{v_3, v_5, v_1, v\}, \{v_4, v_1, v_2, v\}, \{v_5, v_2, v_3, v\}, \{v_1, v_2, v_3, v\}, \{v_2, v_3, v_4, v\}, \{v_3, v_4, v_5, v\}, \{v_4, v_5, v_1, v\}, \{v_5, v_1, v_2, v\}\}.$

Therefore $d_f(W_{1.5}, 4) = 10$.

 $\{v_1, v_3, v_4, v_5, v\}, \{v_1, v_2, v_4, v_5, v\}\}$

Therefore $d_f(W_{1,5}, 5) = 6$.

Moreover, $W_{1,5}^6 = \{\{v_1, v_2, v_3, v_4, v_5, v\}$ and so $d_f(W_{1,5}, 6) = 1$.

Hence $D_f(W_{1.5}, x) = x + 10x^4 + 6x^5 + 6$.

Theorem: 3.3

Let $W_{1,n}$ be a wheel graph with $n + 1 \ge 6$ vertices. Then

- i. $D_f(W_{1,n}, x)$ has no constant term.
- ii. $D_f(W_{1,n}, x)$ has x term, last no $x^2, x^3, ..., x^{\gamma_f(C_n)}$ terms.
- iii. x = 0 is a zero of $D_f(W_{1,n}, x)$ of multiplicity $\gamma_f(W_{1,n})$.

Proof:

Let $W_{1,n}$ be a wheel graph with $n + 1 \ge 6$ vertices.

- i. Since $D_f(W_{1,n}, x) = \sum_{i=\gamma_f(W_{1,n})}^{n+1} d_f(W_{1,n}, i) x^i$ and $\gamma_f(W_{1,n}) \ge 1$, each term of $D_f(W_{1,n}, x)$ has x in it. Hence $D_f(W_{1,n}, x)$ has no constant term
- ii. We have $d_f(W_{1,n}, 1) = 1$, by theorem $\text{Hence}D_f(W_{1,n}, x)$ has a x term. Also by Theorem:7 we have $d_f(W_{1,n}, 1) = 0$ if $1 < i < \left[\frac{n}{2}\right] + 1$.

Since $\left[\frac{n}{3}\right] \le \gamma_f(C_n) \le \left[\frac{n}{3}\right] + 1$, we conclude that $D_f(W_{1,n}, x)$ has no $x^2, x^3, \dots, x^{\gamma_f(C_n)}$ terms.

iii. By (i), $D_f(W_{1,n}, x)$ has no constant term. This shows that $D_f(W_{1,n}, x) = 0$ only if x = 0. Hence x = 0 is zero of the given polynomial. Moreover the least positive of x in the expansion of $D_f(W_{1,n}, x)$ is $\gamma_f(W_{1,n})$. Therefore the multiplicity of zero is $\gamma_f(W_{1,n})$.

Theorem: 3.4

Let $D_f(W_{1,n}, x)$ and $D_f(C_n, x)$ be the fair domination polynomial of $W_{1,n}$ and C_n , respectively. Then, $D_f(W_{1,n}, x) = x[1 + x^{n-1} + D_f(C_n, x)], n \ge 5.$

Proof:

$$D_f(W_{1,n}, x) = \sum_{i=1}^{n+1} d_f(W_{1,n}, i) x^i$$

$$=\sum_{i=1}^{\gamma_f(C_n)-1} d_f(W_{1,n},i) x^i + \sum_{i=\gamma_f(C_n)}^{n-1} d_f(W_{1,n},i) x^i + d_f(W_{1,n},n) x^n + d_f(W_{1,n},n+1) x^{n+1}$$

$$= x + 0 + 0 + \dots + 0 + \sum_{i=\gamma_f(C_n)}^{n-1} d_f (W_{1,n}, i) x^i + (n+1)x^n + x^{n+1}$$

$$= x + \sum_{i=\gamma_f(C_n)}^{n-1} d_f (C_n, i-1)x^i + (n+1)x^n + x^{n+1}$$

$$D_f (W_{1,n}, x) = x + x \left[\sum_{i=\gamma_f(C_n)}^{n-1} d_f (C_n, i-1)x^{i-1} \right] + (n+1)x^n + x^{n+1}$$

Put i - 1 = j

Therefore i = j + 1

$$D_f(W_{1,n},x) = x + x \left[\sum_{j=1}^{n-1} d_f(C_n,j)x^j \right] + (n+1)x^n + x^{n+1}$$

$$= x + x \left[\sum_{j=\gamma_f(C_n)}^{n-2} d_f(C_n,j)x^j \right] + (n+1)x^n + x^{n+1}$$

$$= x + x \left[\sum_{j=\gamma_f(C_n)}^n d_f(C_n,j)x^j - d_f(C_n,n-1)x^{n-1} - d_f(C_n,n)x^n \right] + (n+1)x^n + x^{n+1}$$
 [by lemma:1]

$$= x + x \left[D_f(C_n,x) - nx^{n-1} - x^n \right] + (n+1)x^n + x^{n+1}$$

$$= x + x D_f(C_n,x) - nx^n - x^{n+1} + nx^n + x^n + x^{n+1}$$

$$= x + x D_f(C_n,x) + x^n$$

 $D_f(W_{1,n}, x) = x [1 + x^{n-1} + D_f(C_n, x)].$

References

- [1] A.M Anto, P.Paul Hawkins and T Shyla Isac Mary *Perfect* Dominating Sets and Perfect Dominating Polynomial of a Cycle, Advances in Mathematics: Scientific Journal 8(2019), no.3, pp. 538-543
- [2] A.M Anto, P.Paul Hawkins and T Shyla Isac Mary Perfect Dominating Sets and Perfect Dominating Polynomial of a Path, International Journal of Advanced Science and Technology Vol 28, No. 16,(2010), pp.1226-1236.

[3] S.Alikhani, Y.H. Peng, Introduction to domination polynomial of a graph, ArsCombinatoria, 114(2014) 257-266.

[4] S.Alikhani, Y.H. Peng, Characterization of graphs using domination polynomials European Journal of Combinatorics, 31(2010) 1714-1724.

[5] Abdul Jalit khalaf, Sahib Dominating M. Sh. Kahat and RoslanHasni sets and Dominination polynomial Applied of wheels, Asian Journal of Science, volume 02(3), pp-287-290.

[6] Y.Caro, A.Hansberg, M.Henning, Fair domination in graphs Discrete Mathematics, 312(19)(2012) 2905-2914.

[7] B.Chaluvaraju, V.Chaitra, Fair domination in line graph and its complement, International J.Math. Sci and Engg. Appls, 7(4)(2013) 439-446.

[8] B.Chaluvaraju, K.A Vidya, Generalized perfect domination in graphs J. comb Optim Springer, 27(2)(2014) 292-301.

[9] F.Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1969.

[10] T.W.Haynes, S.T.Hedetniemi and P.J Slater, Fundamentals domination in graphs, Marcel Dekker, Inc., New York (1998).

[11] T.W.Haynes, S.T.Hedetniemi and P.J Slater, Domination in graphs, Advanced topics, Marcel Dekker, Inc., New York (1998).