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ABSTRACT 
           A set S of vertices in G = (V, E) is called a dominating set of G if every vertex not in S 

has at least one neighbour in S. A dominating set S of a graph G is said to be a certified 

dominating set of G if every vertex in S has either zero or at least two neighbours in 𝑉\𝑆. 

The certified domination number, 𝛾𝑐𝑒𝑟(𝐺)of G is defined as the minimum cardinality of 

certified dominating set of G. In this paper, we study the certified domination number of 

Cartesian product of some standard graphs. 

 
Keywords: Dominating set, Certified Dominating set, Certified Domination Number, Cartesian product. 

Subject Classification Number: AMS-05C05, 05C. 

 

1. Introduction 

       In this paper, graph G = (V,E) we mean a simple, finite, connected, undirected graph with neither loops nor 

multiple edges. The order |V (G)| is denoted by n. For graph theoretic 

terminology we refer to West [7]. The open neighborhood of any vertex v in G is N(v) ={x ∶  xv ∈ E(G)} and 

closed neighborhood of a vertex v in G is N[v] =  N(v) ∪ {v}. The 

degree of a vertex in the graph G is denoted by deg(v) and the maximum degree (minimum 

degree) in the graph G is denoted by ∆(𝐺) (𝛿(𝐺)). For a set S ⊆ V (G) the open (closed) 

neighborhood N(S)(N[S]) in G is defined as N(S) = ⋃ N(v)𝑣𝜖𝑆  (N[S] = ⋃ N[v]𝑣𝜖𝑆 . We write 

Kn, Pn, and Cn for a complete graph, a path graph, a cycle graph of order n, respectively. 

The complement of a graph G, denoted by 𝐺, is a graph with the vertex set V (G) such that 

for every two vertices v and w, vw 𝜖 E(𝐺)  if and only if vw ∉ E(𝐺). 

 

         The concept of certified domination in graphs was introduced by Dettlaff, Lemanska, 

Topp, Ziemann and Zylinski[3] and further studied in[2]. It has many application in real 

life situations. This motivated we to study the certified domination number in corona and 

Cartesian product of graphs. 

 

 In [3], authors studied certified dominaiton number in graphs which is defined as follows: Definition 1.1. Let G 

= (V, E) be any graph of order n. A subset S ⊆ V (G) is called a Certified dominating set of G if S is a 

dominating set of G and every vertex in S has either 

zero or at least two neighbours in 𝑉\𝑆. The certified domination number defined by 𝛾𝑐𝑒𝑟(𝐺)is the minimum 

cardinality of certified dominating set in 𝐺. 
 

2. Known Results: 

Theorem 2.1: [2] For any graph G of order n ≥ 2, every certified dominating set of G 

contains its extreme vertices. 

Theorem 2.2:  [2] For any graph G of order n, 1 ≤ 𝛾𝑐𝑒𝑟(𝐺) ≤ n. 

 

Theorem 2.3: [2] For any graph G of order n ≥ 3, 𝛾𝑐𝑒𝑟(𝐺)= 1 if and only if G has a vertex 

of degree n – 1. 

Theorem 2.4: [3] For any Path graph 𝑃𝑛 of order n≥1, 
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𝛾𝑐𝑒𝑟(𝐺) = {1 𝑖𝑓 𝑛 = 1 𝑜𝑟 32        𝑖𝑓 𝑛 = 24        𝑖𝑓 𝑛 = 4  

𝛾𝑐𝑒𝑟(𝐺) = ⌈𝑛3⌉if  𝑛 ≥ 5. 

Theorem 2.5:  [3] For the Cycle graph 𝐶𝑛 (n≥3), 𝛾𝑐𝑒𝑟(𝐺) = ⌈𝑛3⌉. 
 

3. Cartesian Product of Graphs 

          The Cartesian graph product 𝐺1 × 𝐺2called graph product of graphs with disjoint vertex sets and edge sets 

and is the graph with the vertex set 𝑉1 × 𝑉2 and 𝑢 = (𝑢1,  𝑢2) adjacent with 𝑣 = (𝑣1,  𝑣2) whenever [𝑢1 =  𝑣1 

and 𝑢2 adjacent to  𝑣2] or [𝑢2 =  𝑣2 and 𝑢1 adjacent to  𝑣1]. 

 

Theorem 3.1:For n≥3, 𝛾𝑐𝑒𝑟(𝑃2 × 𝑃𝑛) = ⌊𝑛+22 ⌋. 
Proof: Let 𝑉(𝑃2 × 𝑃𝑛) = {(𝑢1,  𝑣𝑖), (𝑢2,  𝑣𝑖): 1 ≤ 𝑖 ≤ 𝑛} be the set of vertices of the first and 

second row, respectively. We prove this theorem by considering six cases. 

           Case (i). Let n=2. Consider the set 𝑆 = {(𝑢1,  𝑣1), (𝑢1,  𝑣2)}. Clearly the set S is a minimum dominating 

set of 𝑃2 × 𝑃𝑛and each vertices in S has exactly two neighbours in 𝑉(𝑃2 × 𝑃𝑛) − 𝑆. Hence, 𝛾𝑐𝑒𝑟(𝑃2 × 𝑃𝑛) = |𝑆|= 2 =⌊𝑛+22 ⌋. 
          Case (ii). Let n=3. Consider the set 𝑆1 = {(𝑢1,  𝑣1), (𝑢2,  𝑣3)}. Clearly the set 𝑆1 is a minimum dominating 

set of 𝑃2 × 𝑃𝑛and each vertices in  𝑆1 has exactly two neighbours in 𝑉(𝑃2 × 𝑃𝑛) −  𝑆1. Hence, 𝛾𝑐𝑒𝑟(𝑃2 × 𝑃𝑛) = | 𝑆1|= 2 =⌊𝑛+22 ⌋. 
Case (iii). Let n be even and 𝑛 ≡ 0(𝑚𝑜𝑑 4). Consider the set 𝑆2 = {(𝑢1,  𝑣𝑛), (𝑢1,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ 𝑛4 ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ 𝑛4}.Clearly, the set  𝑆2is a minimum dominating set of 𝑃2 × 𝑃𝑛and|𝑁(𝑢) ∩  𝑆2|  ≥2 for every 𝑢 ∈ 𝑉(𝑃2 × 𝑃𝑛) −  𝑆2. Hence, 𝛾𝑐𝑒𝑟(𝑃2 × 𝑃𝑛) = | 𝑆2| = ⌊𝑛+22 ⌋. 
Case (iv). Let n be even and 𝑛 ≢ 0(𝑚𝑜𝑑 4). Consider the set 𝑆3 = {(𝑢1,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−34 ⌉ ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ ⌈𝑛−14 ⌉}.Clearly, the set  𝑆3is a minimum dominating set of 𝑃2 × 𝑃𝑛 and|𝑁(𝑢) ∩ 𝑆3|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃2 × 𝑃𝑛) −  𝑆3. Hence, 𝛾𝑐𝑒𝑟(𝑃2 × 𝑃𝑛) = | 𝑆3| = ⌊𝑛+22 ⌋. 
Case (v). Let n be odd and 𝑛 ≡ 1(𝑚𝑜𝑑 4). Consider the set 𝑆4 = {(𝑢1,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−24 ⌉ ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ ⌈𝑛−14 ⌉}.Clearly, the set  𝑆4 is a minimum dominating set of 𝑃2 × 𝑃𝑛 and|𝑁(𝑢) ∩ 𝑆4|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃2 × 𝑃𝑛) −  𝑆4. Hence, 𝛾𝑐𝑒𝑟(𝑃2 × 𝑃𝑛) = | 𝑆4| = ⌊𝑛+22 ⌋. 
Case (vi). Let n be odd and 𝑛 ≢ 1(𝑚𝑜𝑑 4). Consider the set 𝑆5 = {(𝑢1,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛4⌉ ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ ⌈𝑛−24 ⌉}.Clearly, the set  𝑆5 is a minimum dominating set of 𝑃2 × 𝑃𝑛 and|𝑁(𝑢) ∩ 𝑆5|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃2 × 𝑃𝑛) −  𝑆5. Hence, 𝛾𝑐𝑒𝑟(𝑃2 × 𝑃𝑛) = | 𝑆5| = ⌊𝑛+22 ⌋. 
 

Theorem 3.2:For n≥3, 𝛾𝑐𝑒𝑟(𝑃3 × 𝑃𝑛) = ⌊3𝑛+44 ⌋. 
Proof: Let 𝑉(𝑃3 × 𝑃𝑛) = {(𝑢1,  𝑣𝑖), (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} be the set of vertices of the first and second 

row, third row respectively. We prove this theorem by considering five cases. 

           Case (i). Let n=3. Consider the set 𝑆 = {(𝑢1,  𝑣1), (𝑢2,  𝑣2), (𝑢3,  𝑣3). Clearly that S is a minimum 

dominating set of 𝑃3 × 𝑃𝑛and each vertices in S has exactly two neighbours in 𝑉(𝑃3 × 𝑃𝑛) − 𝑆. Hence, 𝛾𝑐𝑒𝑟(𝑃3 × 𝑃𝑛) = |𝑆|= 3 =⌊3𝑛+42 ⌋. 
Case (ii). Let 𝑛 ≡ 0(𝑚𝑜𝑑 4).  Consider the set 𝑆1 = {(𝑢1,  𝑣𝑖), (𝑢3,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−14 ⌉ ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ ⌈𝑛−34 ⌉}. Clearly, the set  𝑆1 is a minimum dominating set of 𝑃3 × 𝑃𝑛 and|𝑁(𝑢) ∩ 𝑆1|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃3 × 𝑃𝑛) −  𝑆1. Hence, 𝛾𝑐𝑒𝑟(𝑃3 × 𝑃𝑛) = | 𝑆1| = ⌊3𝑛+44 ⌋. 
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Case (iii). Let 𝑛 ≡ 1(𝑚𝑜𝑑 4).  Consider the set 𝑆2 = {(𝑢1,  𝑣𝑖), (𝑢3,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−24 ⌉ ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ ⌈𝑛4⌉}. Clearly, the set  𝑆2 is a minimum dominating set of 𝑃3 × 𝑃𝑛 and|𝑁(𝑢) ∩ 𝑆2|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃3 × 𝑃𝑛) −  𝑆2. Hence, 𝛾𝑐𝑒𝑟(𝑃3 × 𝑃𝑛) = | 𝑆2| = ⌊3𝑛+44 ⌋. 
       Case (iv). Let 𝑛 ≡ 2(𝑚𝑜𝑑 4).  Consider the set 𝑆3 = {(𝑢1,  𝑣𝑖), (𝑢3,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−34 ⌉ ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ ⌈𝑛−14 ⌉ , (𝑢2,  𝑣𝑛)}. Clearly, the set  𝑆3 is a minimum dominating set of 𝑃3 ×𝑃𝑛 and|𝑁(𝑢) ∩  𝑆3|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃3 × 𝑃𝑛) −  𝑆3. Hence, 𝛾𝑐𝑒𝑟(𝑃3 × 𝑃𝑛) = | 𝑆3| = ⌊3𝑛+44 ⌋. 
           Case (v). Let 𝑛 ≡ 3(𝑚𝑜𝑑 4).  Consider the set 𝑆4 = {(𝑢1,  𝑣𝑖), (𝑢3,  𝑣𝑖): 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−44 ⌉ ,(𝑢2,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤ ⌈𝑛−24 ⌉ , (𝑢2,  𝑣𝑛), (𝑢2,  𝑣𝑛−1)}. Clearly, the set  𝑆4 is a minimum dominating set of 𝑃3 × 𝑃𝑛 and|𝑁(𝑢) ∩  𝑆4|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃3 × 𝑃𝑛) −  𝑆4. Hence, 𝛾𝑐𝑒𝑟(𝑃3 × 𝑃𝑛) = | 𝑆4| = ⌊3𝑛+44 ⌋. 
 

Theorem 3.3:For n≥ 4, 𝛾𝑐𝑒𝑟(𝑃3 × 𝑃𝑛)={n +  1  if n =  5, 6, 9.n          if otherwise.  

Proof: Let 𝑉(𝑃4 × 𝑃𝑛) = {(𝑢1,  𝑣𝑖), (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖), (𝑢4,  𝑣𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} be the set of vertices of the first, 

second, third and fourth row respectively. We prove this theorem by considering four cases. 

 

Case (i). Let 𝑛 = 5 𝑜𝑟 9.  Consider the set𝑆 = {(𝑢1,  𝑣𝑖), : 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−34 ⌉ , (𝑢3,  𝑣𝑖): 𝑖 = 4𝑝 − 3, 1 ≤𝑝 ≤ ⌈𝑛4⌉}. Clearly, the set 𝑆 is a minimum dominating set of 𝑃4 × 𝑃𝑛  and|𝑁(𝑢) ∩ 𝑆|  ≥ 2 for every 𝑢 ∈𝑉(𝑃4 × 𝑃𝑛) − 𝑆. Hence, 𝛾𝑐𝑒𝑟(𝑃4 × 𝑃𝑛) = |𝑆| = 𝑛 + 1. 
        Case (ii). Let 𝑛 = 6.  Consider the 

set 𝑆1 = {(𝑢1,  𝑣𝑖), : 𝑖 = 4𝑝 − 2, 1 ≤ 𝑝 ≤ ⌈𝑛4⌉ , (𝑢2,  𝑣4), (𝑢3,  𝑣1), (𝑢3,  𝑣6), (𝑢4,  𝑣3), (𝑢4,  𝑣5)}. Clearly, the set  𝑆1 is a minimum dominating set of 𝑃4 × 𝑃𝑛 and|𝑁(𝑢) ∩  𝑆1|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃4 × 𝑃𝑛) −  𝑆1. Hence, 𝛾𝑐𝑒𝑟(𝑃4 × 𝑃𝑛) = | 𝑆1| = 𝑛 + 1. 
        Case (iii). Let 𝑛 ≡ 0(𝑚𝑜𝑑 4).  Consider the set 𝑆2 = {(𝑢1,  𝑣𝑖), : 𝑖 = 4𝑝 − 2, 1 ≤ 𝑝 ≤ 𝑛4 , (𝑢4,  𝑣𝑖): 𝑖 = 4𝑝 −1, 1 ≤ 𝑝 ≤ 𝑛4}. Clearly, the set  𝑆2 is a minimum dominating set of 𝑃4 × 𝑃𝑛 and|𝑁(𝑢) ∩  𝑆2|  ≥ 2 for every 𝑢 ∈ 𝑉(𝑃4 × 𝑃𝑛) −  𝑆2. Hence, 𝛾𝑐𝑒𝑟(𝑃4 × 𝑃𝑛) = | 𝑆2| = 𝑛. 
 

        Case (iv). Let 𝑛 ≢ 0(𝑚𝑜𝑑 4) and 𝑛 ≠ 5,6,9.  Now we split 𝑃4 × 𝑃𝑛into k number of 𝑃4 × 𝑃4and 𝑃4 × 𝑃3 

blocks 𝐵𝑖in 1 ≤ 𝑖 ≤ 𝑘 such that k is maximum. Also, assume, |𝑉(𝐵𝑖)| ≥ |𝑉(𝐵𝑖+1)|and 𝑉( 𝐵𝑖) ∩ 𝑉( 𝐵𝑖+1) = ∅. 

Let us consider the vertices of 𝑃4 × 𝑃4 as  𝑉(𝑃4 × 𝑃4) = {(𝑢𝑖 ,  𝑣𝑗), 1 ≤ 𝑖 = 𝑗 ≤ 4}  and the vertices 𝑃4 × 𝑃3as 𝑉(𝑃4 × 𝑃3) = {(𝑝𝑖 ,  𝑞𝑗), 1 ≤ 𝑖 ≤ 4, 1 ≤ 𝑗 ≤ 3}. Let 𝑆 = {(𝑢3,  𝑣1), (𝑢1,  𝑣2), (𝑢2,  𝑣4), (𝑢4,  𝑣3)}is a minimum 

certified dominating set of each 𝐵𝑖  in 𝑃4 × 𝑃4. We consider the following three sub-cases: 

 

Sub-case (i): Blocks 𝐵𝑖  contains only one copy of 𝑃4 × 𝑃3. 

Let 𝑈 = {(𝑝1 ,  𝑞1), (𝑝3,  𝑞3), (𝑝4,  𝑞1)} be the set of vertices belongs to 𝑃4 × 𝑃3 𝑏𝑙𝑜𝑐𝑘. Then, 

the set 𝑆 ∪ 𝑈 is the minimum certified domination set of 𝑃4 × 𝑃𝑛  and so 𝛾𝑐𝑒𝑟(𝑃4 × 𝑃𝑛) = 𝑛. 
Sub-case (ii): Blocks 𝐵𝑖  contains two copies of 𝑃4 × 𝑃3, say (𝐵𝑖 , 𝐵𝑖+1). 

Let 𝐿 = {(𝑝1,  𝑞1), (𝑝3,  𝑞3), (𝑝4,  𝑞1)} be the set of vertices belongs to 𝐵𝑖and let 𝑀 = {(𝑝1 ,  𝑞1), (𝑝2,  𝑞3), (𝑝4,  𝑞2)}be the set of vertices belongs to 𝐵𝑖+1. Then 

the set 𝑆 ∪ 𝐿 ∪ 𝑀 is the minimum certified domination set of 𝑃4 × 𝑃𝑛  and so 𝛾𝑐𝑒𝑟(𝑃4 × 𝑃𝑛) = 𝑛. 
Sub-case (iii): Blocks 𝐵𝑖  contains two copies of 𝑃4 × 𝑃3, say (𝐵𝑖 , 𝐵𝑖+1,  𝐵𝑖+2). 

Let 𝑁 = {(𝑝1 ,  𝑞2), (𝑝3 ,  𝑞3), (𝑝4,  𝑞1)} be the set of vertices belongs to 𝐵𝑖and  𝐵𝑖+2 and let 𝑂 = {(𝑝1,  𝑞1), (𝑝2,  𝑞3), (𝑝4,  𝑞2)}be the set of vertices belongs to 𝐵𝑖+1. Then 

the set 𝑆 ∪ 𝑁 ∪ 𝑂 is the minimum certified domination set of 𝑃4 × 𝑃𝑛  and so 𝛾𝑐𝑒𝑟(𝑃4 × 𝑃𝑛) = 𝑛. 
 

Theorem 3.4:For n≥2, 𝛾𝑐𝑒𝑟(𝐶3 × 𝑃𝑛)={⌈3𝑛4 ⌉ + 1      𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 4)⌈3𝑛4 ⌉                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Proof:Let 𝑉(𝐶3 × 𝑃𝑛) = {(𝑢1,  𝑣𝑖), (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} be the set of vertices of the first, second and 

third row respectively. We prove this theorem by considering six cases. 

 

            Case (i). Let n=2. Consider the set 𝑆 = {(𝑢1,  𝑣2), (𝑢2,  𝑣1)}. Clearly the set S is a minimum dominating 

set of 𝐶3 × 𝑃𝑛and each vertices in S has exactly two neighbours in 𝑉(𝐶3 × 𝑃𝑛) − 𝑆. Hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝑃𝑛) = |𝑆|= 3=⌈3𝑛4 ⌉. 
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           Case (ii). Let n=3. Consider the set 𝑆1 = {(𝑢1,  𝑣3), (𝑢2,  𝑣2), (𝑢3,  𝑣1)}. Clearly the set 𝑆1 is a minimum 

dominating set of 𝐶3 × 𝑃𝑛 and |𝑁(𝑢) ∩  𝑆1|  ≥ 2 for every 𝑢 ∈ 𝑉(𝐶3 × 𝑃𝑛) −  𝑆1. Hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝑃𝑛) = | 𝑆1|= 

3 =⌈3𝑛4 ⌉. 
 

        Case (iii). Let 𝑛 ≡ 0(𝑚𝑜𝑑 4).  Consider the 

set 𝑆2 = {(𝑢1,  𝑣𝑖), : 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤  ⌈𝑛−34 ⌉ , (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶  𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−34 ⌉}. Clearly, the 

set  𝑆2 is a minimum dominating set of 𝐶3 × 𝑃𝑛  and|𝑁(𝑢) ∩  𝑆2|  ≥ 2 for every 𝑢 ∈ 𝑉(𝐶3 × 𝑃𝑛) −  𝑆2. Hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝑃𝑛) = | 𝑆2| = ⌈3𝑛4 ⌉ + 1. 
 

Case (iv). Let 𝑛 ≡ 1(𝑚𝑜𝑑 4).  Consider the set 𝑆3 = {(𝑢1,  𝑣𝑖), : 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤  ⌈𝑛4⌉ , (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶ 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−24 ⌉}. Clearly, the set  𝑆3 is a minimum dominating set of 𝐶3 × 𝑃𝑛 and|𝑁(𝑢) ∩  𝑆3|  ≥ 2 

for every 𝑢 ∈ 𝑉(𝐶3 × 𝑃𝑛) −  𝑆3. Hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝑃𝑛) = | 𝑆3| = ⌈3𝑛4 ⌉. 
              Case (v). Let 𝑛 ≡ 2(𝑚𝑜𝑑 4).  Consider the 

set 𝑆4 = {(𝑢1,  𝑣𝑖), : 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤  ⌈𝑛−14 ⌉ , (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶  𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛−34 ⌉}. Clearly, the 

set  𝑆4 is a minimum dominating set of 𝐶3 × 𝑃𝑛  and|𝑁(𝑢) ∩  𝑆4|  ≥ 2 for every 𝑢 ∈ 𝑉(𝐶3 × 𝑃𝑛) −  𝑆4. Hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝑃𝑛) = | 𝑆4| = ⌈3𝑛4 ⌉. 
Case (v). Let 𝑛 ≡ 3(𝑚𝑜𝑑 4).  Consider the set 𝑆5 = {(𝑢1,  𝑣𝑖), : 𝑖 = 4𝑝 − 3, 1 ≤ 𝑝 ≤  ⌈𝑛−24 ⌉ , (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶ 𝑖 = 4𝑝 − 1, 1 ≤ 𝑝 ≤ ⌈𝑛4⌉}. Clearly, the set  𝑆5 is a minimum dominating set of 𝐶3 × 𝑃𝑛 and|𝑁(𝑢) ∩  𝑆5|  ≥ 2 for 

every 𝑢 ∈ 𝑉(𝐶3 × 𝑃𝑛) −  𝑆5. Hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝑃𝑛) = | 𝑆5| = ⌈3𝑛4 ⌉. 
 

Theorem 3.5:For n≥2, 𝛾𝑐𝑒𝑟(𝐶4 × 𝑃𝑛) = 𝑛. 
Proof:Let 𝑉(𝐶4 × 𝑃𝑛) = {(𝑢1,  𝑣𝑖), (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} be the set of vertices of the first, 

second, third and fourth row respectively. We prove this theorem by considering two cases. 

Case (i). Let n be even. Consider the set 𝑆 = {(𝑢2,  𝑣𝑖), : 𝑖 = 2𝑝 − 1, 1 ≤ 𝑝 ≤  ⌈𝑛−12 ⌉ , (𝑢4,  𝑣𝑖) ∶  𝑖 = 2𝑝, 1 ≤ 𝑝 ≤𝑛2}. Clearly the set 𝑆 is a minimum dominating set of 𝐶4 × 𝑃𝑛 and |𝑁(𝑢) ∩ 𝑆|  ≥ 2 for every 𝑢 ∈ 𝑉(𝐶4 × 𝑃𝑛) − 𝑆. 

Hence, 𝛾𝑐𝑒𝑟(𝐶4 × 𝑃𝑛) = |𝑆| = 𝑛. 
             Case (ii). Let n be odd. Consider the set𝑆1 = {(𝑢2,  𝑣𝑖), : 𝑖 = 2𝑝 − 1, 1 ≤ 𝑝 ≤  ⌈𝑛2⌉ , (𝑢4,  𝑣𝑖) ∶  𝑖 = 2𝑝,1 ≤ 𝑝 ≤ ⌈𝑛2⌉}. Clearly the set 𝑆1 is a minimum dominating set of 𝐶4 × 𝑃𝑛  and |𝑁(𝑢) ∩ 𝑆1|  ≥ 2 for every 𝑢 ∈𝑉(𝐶4 × 𝑃𝑛) − 𝑆1. Hence, 𝛾𝑐𝑒𝑟(𝐶4 × 𝑃𝑛) = |𝑆1| = 𝑛. 
 

Theorem 3.6:For n≥2, 𝛾𝑐𝑒𝑟(𝐶3 × 𝐶𝑛) = ⌈3𝑛4 ⌉. 
Proof:Let 𝑉(𝐶3 × 𝐶𝑛) = {(𝑢1,  𝑣𝑖), (𝑢2,  𝑣𝑖), (𝑢3,  𝑣𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} be the set of vertices of the first, second, third 

row respectively. We prove this theorem by considering two cases. 

Case (i). Let n=2. Consider the set 𝑆 = {(𝑢1,  𝑣1), (𝑢2,  𝑣1), (𝑢3,  𝑣3)}. Clearly the set S is a minimum dominating 

set of 𝐶3 × 𝐶𝑛. Hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝐶𝑛) = |𝑆|= 3=⌈3𝑛4 ⌉. 

         Case (ii). Let 𝑛 ≡ 0(𝑚𝑜𝑑 4).  Consider the set 𝑆1 = {(𝑢1,  𝑣𝑖): 𝑖 = 4𝑝 + 1, 1 ≤ 𝑝 ≤ ⌈𝑛−34 ⌉ , 𝑛 ≥ 8,(𝑢2,  𝑣𝑖), : 𝑖 = 4𝑝 − 2, 1 ≤ 𝑝 ≤ 𝑛−24 }. Clearly, the set  𝑆1 is a minimum dominating set of 𝐶3 × 𝐶𝑛 andevery 

vertex in 𝑆1 has greater than two neighbours in  𝑉(𝐶3 × 𝐶𝑛) − 𝑆1.  Therefore, that  𝑆1 is a minimum certified 

dominating set of 𝐶3 × 𝐶𝑛 and hence, 𝛾𝑐𝑒𝑟(𝐶3 × 𝐶𝑛) = | 𝑆1|= ⌈3𝑛4 ⌉.  
 

Results 3.7: 

(i) For n≥2, 𝛾𝑐𝑒𝑟(𝐶4 × 𝐶𝑛) = 𝑛. 
(ii) For n≥5, 𝛾𝑐𝑒𝑟(𝐶3 × 𝐶𝑛) = {𝑛           𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 5)𝑛 + 2   𝑖𝑓 𝑛 ≡ 3(𝑚𝑜𝑑 5)𝑛 + 1              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
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