Certified Domination Number in Product of Graphs

S. Durai Raj¹ and S.G. Shiji Kumari²

¹Associate Professor and Principal, Department of Mathematics, Pioneer Kumaraswami College, Nagercoil - 629003, Tamil Nadu, India.

²Research Scholar, Reg No: 19213132092002, Department of Mathematics, Pioneer Kumaraswami College, Nagercoil - 629003, Tamil Nadu, India.

Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli - 627012, Tamil Nadu, India. Email : durairajsprincpkc@gmail.com¹, nazarethprince1977@gmail.com²

ABSTRACT

A set S of vertices in G = (V, E) is called a dominating set of G if every vertex not in S has at least one neighbour in S. A dominating set S of a graph G is said to be a certified dominating set of G if every vertex in S has either zero or at least two neighbours in $V \setminus S$. The certified domination number, $\gamma_{cer}(G)$ of G is defined as the minimum cardinality of certified dominating set of G. In this paper, we study the certified domination number of Cartesian product of some standard graphs.

Keywords: Dominating set, Certified Dominating set, Certified Domination Number, Cartesian product. Subject Classification Number: AMS-05C05, 05C.

1. Introduction

In this paper, graph G = (V,E) we mean a simple, finite, connected, undirected graph with neither loops nor multiple edges. The order |V(G)| is denoted by n. For graph theoretic terminology we refer to West [7]. The open neighborhood of any vertex v in G is $N(v) = \{x : xv \in E(G)\}$ and closed neighborhood of a vertex v in G is $N[v] = N(v) \cup \{v\}$. The degree of a vertex in the graph G is denoted by deg(v) and the maximum degree (minimum degree) in the graph G is denoted by $\Delta(G)$ ($\delta(G)$). For a set $S \subseteq V$ (G) the open (closed) neighborhood N(S)(N[S]) in G is defined as N(S) = $\bigcup_{v \in S} N(v)$ (N[S] = $\bigcup_{v \in S} N[v]$. We write K_n, P_n , and C_n for a complete graph, a path graph, a cycle graph of order n, respectively. The complement of a graph G, denoted by \overline{G} , is a graph with the vertex set V (G) such that for every two vertices v and w, vw $\epsilon \in (\overline{G})$ if and only if vw $\notin E(\overline{G})$.

The concept of certified domination in graphs was introduced by Dettlaff, Lemanska, Topp, Ziemann and Zylinski[3] and further studied in[2]. It has many application in real life situations. This motivated we to study the certified domination number in corona and Cartesian product of graphs.

In [3], authors studied certified dominaiton number in graphs which is defined as follows: Definition 1.1. Let G = (V, E) be any graph of order n. A subset $S \subseteq V$ (G) is called a Certified dominating set of G if S is a dominating set of G and every vertex in S has either

zero or at least two neighbours in $V \setminus S$. The certified domination number defined by $\gamma_{cer}(G)$ is the minimum cardinality of certified dominating set in G.

2. Known Results:

Theorem 2.1: [2] For any graph G of order $n \ge 2$, every certified dominating set of G contains its extreme vertices.

Theorem 2.2: [2] For any graph G of order n, $1 \le \gamma_{cer}(G) \le n$.

Theorem 2.3: [2] For any graph G of order $n \ge 3$, $\gamma_{cer}(G) = 1$ if and only if G has a vertex of degree n - 1.

Theorem 2.4: [3] For any Path graph P_n of order $n \ge 1$,

$$\gamma_{cer}(G) = \begin{cases} 1 \ if \ n = 1 \ or \ 3 \\ 2 \ if \ n = 2 \\ 4 \ if \ n = 4 \end{cases}$$

 $\gamma_{cer}(G) = \left[\frac{n}{3}\right]$ if $n \ge 5$.

Theorem 2.5: [3] For the Cycle graph C_n (n \geq 3), $\gamma_{cer}(G) = \left[\frac{n}{3}\right]$.

3. Cartesian Product of Graphs

The Cartesian graph product $G_1 \times G_2$ called graph product of graphs with disjoint vertex sets and edge sets and is the graph with the vertex set $V_1 \times V_2$ and $u = (u_1, u_2)$ adjacent with $v = (v_1, v_2)$ whenever $[u_1 = v_1$ and u_2 adjacent to v_2 or $[u_2 = v_2$ and u_1 adjacent to v_1].

Theorem 3.1:For $n \ge 3$, $\gamma_{cer}(P_2 \times P_n) = \left\lfloor \frac{n+2}{2} \right\rfloor$. **Proof:** Let $V(P_2 \times P_n) = \{(u_1, v_i), (u_2, v_i): 1 \le i \le n\}$ be the set of vertices of the first and second row, respectively. We prove this theorem by considering six cases.

Case (i). Let n=2. Consider the set $S = \{(u_1, v_1), (u_1, v_2)\}$. Clearly the set S is a minimum dominating set of $P_2 \times P_n$ and each vertices in S has exactly two neighbours in $V(P_2 \times P_n) - S$. Hence, $\gamma_{cer}(P_2 \times P_n) = |S| = 2 = \left\lfloor \frac{n+2}{2} \right\rfloor$.

Case (ii). Let n=3. Consider the set $S_1 = \{(u_1, v_1), (u_2, v_3)\}$. Clearly the set S_1 is a minimum dominating set of $P_2 \times P_n$ and each vertices in S_1 has exactly two neighbours in $V(P_2 \times P_n) - S_1$. Hence, $\gamma_{cer}(P_2 \times P_n) = |S_1| = 2 = \left|\frac{n+2}{2}\right|$.

Case (iii). Let n be even and $n \equiv 0 \pmod{4}$. Consider the set $S_2 = \left\{ (u_1, v_n), (u_1, v_i): i = 4p - 1, 1 \le p \le \frac{n}{4}, (u_2, v_i): i = 4p - 3, 1 \le p \le \frac{n}{4} \right\}$. Clearly, the set S_2 is a minimum dominating set of $P_2 \times P_n$ and $|N(u) \cap S_2| \ge 2$ for every $u \in V(P_2 \times P_n) - S_2$. Hence, $\gamma_{cer}(P_2 \times P_n) = |S_2| = \left\lfloor \frac{n+2}{2} \right\rfloor$.

Case (iv). Let n be even and $n \not\equiv 0 \pmod{4}$. Consider the set $S_3 = \left\{ (u_1, v_i) : i = 4p - 1, 1 \le p \le \left\lceil \frac{n-3}{4} \right\rceil \right\}$, $(u_2, v_i) : i = 4p - 3, 1 \le p \le \left\lceil \frac{n-1}{4} \right\rceil$. Clearly, the set S_3 is a minimum dominating set of $P_2 \times P_n$ and $|N(u) \cap S_3| \ge 2$ for every $u \in V(P_2 \times P_n) - S_3$. Hence, $\gamma_{cer}(P_2 \times P_n) = |S_3| = \left\lfloor \frac{n+2}{2} \right\rfloor$.

Case (v). Let n be odd and $n \equiv 1 \pmod{4}$. Consider the set $S_4 = \left\{ (u_1, v_i) : i = 4p - 1, 1 \le p \le \left[\frac{n-2}{4}\right], (u_2, v_i) : i = 4p - 3, 1 \le p \le \left[\frac{n-1}{4}\right] \right\}$. Clearly, the set S_4 is a minimum dominating set of $P_2 \times P_n$ and $|N(u) \cap S_4| \ge 2$ for every $u \in V(P_2 \times P_n) - S_4$. Hence, $\gamma_{cer}(P_2 \times P_n) = |S_4| = \left\lfloor\frac{n+2}{2}\right\rfloor$.

Case (vi). Let n be odd and $n \not\equiv 1 \pmod{4}$. Consider the set $S_5 = \left\{ (u_1, v_i) : i = 4p - 1, 1 \le p \le \left\lceil \frac{n}{4} \right\rceil \right\}$. $(u_2, v_i) : i = 4p - 3, 1 \le p \le \left\lceil \frac{n-2}{4} \right\rceil \right\}$. Clearly, the set S_5 is a minimum dominating set of $P_2 \times P_n$ and $|N(u) \cap S_5| \ge 2$ for every $u \in V(P_2 \times P_n) - S_5$. Hence, $\gamma_{cer}(P_2 \times P_n) = |S_5| = \left\lfloor \frac{n+2}{2} \right\rfloor$.

Theorem 3.2:For $n \ge 3$, $\gamma_{cer}(P_3 \times P_n) = \left\lfloor \frac{3n+4}{4} \right\rfloor$.

Proof: Let $V(P_3 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i) : 1 \le i \le n\}$ be the set of vertices of the first and second row, third row respectively. We prove this theorem by considering five cases.

Case (i). Let n=3. Consider the set $S = \{(u_1, v_1), (u_2, v_2), (u_3, v_3)\}$. Clearly that S is a minimum dominating set of $P_3 \times P_n$ and each vertices in S has exactly two neighbours in $V(P_3 \times P_n) - S$. Hence, $\gamma_{cer}(P_3 \times P_n) = |S| = 3 = \left\lfloor \frac{3n+4}{2} \right\rfloor$. Case (ii). Let $n \equiv 0 \pmod{4}$. Consider the set $S_1 = \{(u_1, v_i), (u_3, v_i): i = 4p - 1, 1 \le p \le \left\lceil \frac{n-1}{4} \right\rceil, (u_2, v_i): i = 4p - 3, 1 \le p \le \left\lceil \frac{n-3}{4} \right\rceil\}$. Clearly, the set S_1 is a minimum dominating set of $P_3 \times P_n$ and $|N(u) \cap S_1| \ge 2$ for every $u \in V(P_3 \times P_n) - S_1$. Hence, $\gamma_{cer}(P_3 \times P_n) = |S_1| = \left\lfloor \frac{3n+4}{4} \right\rfloor$. Case (iii). Let $n \equiv 1 \pmod{4}$. Consider the set $S_2 = \left\{ (u_1, v_i), (u_3, v_i) : i = 4p - 1, 1 \le p \le \left\lceil \frac{n-2}{4} \right\rceil, (u_2, v_i) : i = 4p - 3, 1 \le p \le \left\lceil \frac{n}{4} \right\rceil \right\}$. Clearly, the set S_2 is a minimum dominating set of $P_3 \times P_n$ and $|N(u) \cap S_2| \ge 2$ for every $u \in V(P_3 \times P_n) - S_2$. Hence, $\gamma_{cer}(P_3 \times P_n) = |S_2| = \left\lfloor \frac{3n+4}{4} \right\rfloor$.

Case (iv). Let $n \equiv 2 \pmod{4}$. Consider the set $S_3 = \{(u_1, v_i), (u_3, v_i): i = 4p - 1, 1 \le p \le \left\lceil \frac{n-3}{4} \right\rceil, (u_2, v_i): i = 4p - 3, 1 \le p \le \left\lceil \frac{n-1}{4} \right\rceil, (u_2, v_n) \}$. Clearly, the set S_3 is a minimum dominating set of $P_3 \times P_n$ and $|N(u) \cap S_3| \ge 2$ for every $u \in V(P_3 \times P_n) - S_3$. Hence, $\gamma_{cer}(P_3 \times P_n) = |S_3| = \left\lfloor \frac{3n+4}{4} \right\rfloor$.

Case (v). Let $n \equiv 3 \pmod{4}$. Consider the set $S_4 = \{(u_1, v_i), (u_3, v_i): i = 4p - 1, 1 \le p \le \left\lceil \frac{n-4}{4} \right\rceil, (u_2, v_i): i = 4p - 3, 1 \le p \le \left\lceil \frac{n-2}{4} \right\rceil, (u_2, v_n), (u_2, v_{n-1}) \}$. Clearly, the set S_4 is a minimum dominating set of $P_3 \times P_n$ and $|N(u) \cap S_4| \ge 2$ for every $u \in V(P_3 \times P_n) - S_4$. Hence, $\gamma_{cer}(P_3 \times P_n) = |S_4| = \left\lfloor \frac{3n+4}{4} \right\rfloor$.

Theorem 3.3:For $n \ge 4$, $\gamma_{cer}(P_3 \times P_n) = \begin{cases} n + 1 & \text{if } n = 5, 6, 9. \\ n & \text{if otherwise.} \end{cases}$

Proof: Let $V(P_4 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_4, v_i) : 1 \le i \le n\}$ be the set of vertices of the first, second, third and fourth row respectively. We prove this theorem by considering four cases.

Case (i). Let n = 5 or 9. Consider the set $S = \left\{ (u_1, v_i), : i = 4p - 1, 1 \le p \le \left\lceil \frac{n-3}{4} \right\rceil, (u_3, v_i): i = 4p - 3, 1 \le p \le \left\lceil \frac{n}{4} \right\rceil \right\}$. Clearly, the set S is a minimum dominating set of $P_4 \times P_n$ and $|N(u) \cap S| \ge 2$ for every $u \in V(P_4 \times P_n) - S$. Hence, $\gamma_{cer}(P_4 \times P_n) = |S| = n + 1$. Case (ii). Let n = 6. Consider the

set $S_1 = \{(u_1, v_i), : i = 4p - 2, 1 \le p \le \left[\frac{n}{4}\right], (u_2, v_4), (u_3, v_1), (u_3, v_6), (u_4, v_3), (u_4, v_5)\}$. Clearly, the set S_1 is a minimum dominating set of $P_4 \times P_n$ and $|N(u) \cap S_1| \ge 2$ for every $u \in V(P_4 \times P_n) - S_1$. Hence, $\gamma_{cer}(P_4 \times P_n) = |S_1| = n + 1$.

Case (iii). Let $n \equiv 0 \pmod{4}$. Consider the set $S_2 = \left\{ (u_1, v_i), : i = 4p - 2, 1 \le p \le \frac{n}{4}, (u_4, v_i): i = 4p - 1, 1 \le p \le \frac{n}{4} \right\}$. Clearly, the set S_2 is a minimum dominating set of $P_4 \times P_n$ and $|N(u) \cap S_2| \ge 2$ for every $u \in V(P_4 \times P_n) - S_2$. Hence, $\gamma_{cer}(P_4 \times P_n) = |S_2| = n$.

Case (iv). Let $n \neq 0 \pmod{4}$ and $n \neq 5,6,9$. Now we split $P_4 \times P_n$ into k number of $P_4 \times P_4$ and $P_4 \times P_3$ blocks B_i in $1 \leq i \leq k$ such that k is maximum. Also, assume, $|V(B_i)| \geq |V(B_{i+1})|$ and $V(B_i) \cap V(B_{i+1}) = \emptyset$. Let us consider the vertices of $P_4 \times P_4$ as $V(P_4 \times P_4) = \{(u_i, v_j), 1 \leq i = j \leq 4\}$ and the vertices $P_4 \times P_3$ as $V(P_4 \times P_3) = \{(p_i, q_j), 1 \leq i \leq 4, 1 \leq j \leq 3\}$. Let $S = \{(u_3, v_1), (u_1, v_2), (u_2, v_4), (u_4, v_3)\}$ is a minimum certified dominating set of each B_i in $P_4 \times P_4$. We consider the following three sub-cases:

Sub-case (i): Blocks B_i contains only one copy of $P_4 \times P_3$.

Let $U = \{(p_1, q_1), (p_3, q_3), (p_4, q_1)\}$ be the set of vertices belongs to $P_4 \times P_3$ block. Then, the set $S \cup U$ is the minimum certified domination set of $P_4 \times P_n$ and so $\gamma_{cer}(P_4 \times P_n) = n$.

Sub-case (ii): Blocks B_i contains two copies of $P_4 \times P_3$, say (B_i, B_{i+1}) .

Let $L = \{ (p_1, q_1), (p_3, q_3), (p_4, q_1) \}$ be the set of vertices belongs B_i and to let $M = \{(p_1, q_1), (p_2, q_3), (p_4, q_2)\}$ be the set of vertices belongs Then to B_{i+1} . the set $S \cup L \cup M$ is the minimum certified domination set of $P_4 \times P_n$ and so $\gamma_{cer}(P_4 \times P_n) = n$. Sub-case (iii): Blocks B_i contains two copies of $P_4 \times P_3$, say (B_i, B_{i+1}, B_{i+2}) .

Let $N = \{(p_1, q_2), (p_3, q_3), (p_4, q_1)\}$ be the set of vertices belongs to B_i and B_{i+2} and let $O = \{(p_1, q_1), (p_2, q_3), (p_4, q_2)\}$ be the set of vertices belongs to B_{i+1} . Then the set $S \cup N \cup O$ is the minimum certified domination set of $P_4 \times P_n$ and so $\gamma_{cer}(P_4 \times P_n) = n$.

Theorem 3.4: For
$$n \ge 2$$
, $\gamma_{cer}(C_3 \times P_n) = \begin{cases} \left\lceil \frac{3n}{4} \right\rceil + 1 & \text{if } n \equiv 0 \pmod{4} \\ \left\lceil \frac{3n}{4} \right\rceil & \text{otherwise} \end{cases}$

Proof:Let $V(C_3 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i) : 1 \le i \le n\}$ be the set of vertices of the first, second and third row respectively. We prove this theorem by considering six cases.

Case (i). Let n=2. Consider the set $S = \{(u_1, v_2), (u_2, v_1)\}$. Clearly the set S is a minimum dominating set of $C_3 \times P_n$ and each vertices in S has exactly two neighbours in $V(C_3 \times P_n) - S$. Hence, $\gamma_{cer}(C_3 \times P_n) = |S| = 3 = \left\lfloor \frac{3n}{4} \right\rfloor$.

Case (ii). Let n=3. Consider the set $S_1 = \{(u_1, v_3), (u_2, v_2), (u_3, v_1)\}$. Clearly the set S_1 is a minimum dominating set of $C_3 \times P_n$ and $|N(u) \cap S_1| \ge 2$ for every $u \in V(C_3 \times P_n) - S_1$. Hence, $\gamma_{cer}(C_3 \times P_n) = |S_1| = |S_1| = |S_1|$ $3 = \left[\frac{3n}{4}\right]$

Case (iii). Let $n \equiv 0 \pmod{4}$. Consider the set $S_2 = \left\{ (u_1, v_i), : i = 4p - 3, 1 \le p \le \left\lceil \frac{n-3}{4} \right\rceil, (u_2, v_i), (u_3, v_i) : i = 4p - 1, 1 \le p \le \left\lceil \frac{n-3}{4} \right\rceil \right\}$. Clearly, the set S_2 is a minimum dominating set of $C_3 \times P_n$ and $|N(u) \cap S_2| \ge 2$ for every $u \in V(C_3 \times P_n) - S_2$. Hence, $\gamma_{cer}(C_3 \times P_n) = |S_2| = \left[\frac{3n}{4}\right] + 1.$

i = 4p - 1, $1 \le p \le \left\lfloor \frac{n-2}{4} \right\rfloor$. Clearly, the set S_3 is a minimum dominating set of $C_3 \times P_n$ and $|N(u) \cap S_3| \ge 2$

for every $u \in V(C_3 \times P_n) - S_3$. Hence, $\gamma_{cer}(C_3 \times P_n) = |S_3| = \left[\frac{3n}{4}\right]$. Case (v). Let $n \equiv 2(mod \ 4)$. Consider the set $S_4 = \left\{(u_1, v_i), : i = 4p - 3, 1 \le p \le \left[\frac{n-1}{4}\right], (u_2, v_i), (u_3, v_i) : i = 4p - 1, 1 \le p \le \left[\frac{n-3}{4}\right]\right\}$. Clearly, the set S_4 is a minimum dominating set of $C_3 \times P_n$ and $|N(u) \cap S_4| \ge 2$ for every $u \in V(C_3 \times P_n) - S_4$. Hence, $\gamma_{cer}(C_3 \times P_n) = |S_4| = \left|\frac{3n}{4}\right|.$

i = 4p - 1, $1 \le p \le \left\lceil \frac{n}{4} \right\rceil$. Clearly, the set S_5 is a minimum dominating set of $C_3 \times P_n$ and $|N(u) \cap S_5| \ge 2$ for every $u \in V(C_3 \times P_n) - S_5$. Hence, $\gamma_{cer}(C_3 \times P_n) = |S_5| = \left\lfloor \frac{3n}{4} \right\rfloor$

Theorem 3.5:For $n \ge 2$, $\gamma_{cer}(C_4 \times P_n) = n$.

Proof:Let $V(C_4 \times P_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i), (u_3, v_i) : 1 \le i \le n\}$ be the set of vertices of the first, second, third and fourth row respectively. We prove this theorem by considering two cases.

 $\frac{n}{2}$. Clearly the set S is a minimum dominating set of $C_4 \times P_n$ and $|N(u) \cap S| \ge 2$ for every $u \in V(C_4 \times P_n) - S$. Hence, $\gamma_{cer}(C_4 \times P_n) = |S| = n$.

Case (ii). Let n be odd. Consider the set $S_1 = \{(u_2, v_i), : i = 2p - 1, 1 \le p \le \lfloor \frac{n}{2} \rfloor, (u_4, v_i) : i = 2p, \}$ $1 \le p \le \lfloor \frac{n}{2} \rfloor$. Clearly the set S_1 is a minimum dominating set of $C_4 \times P_n$ and $|N(u) \cap S_1| \ge 2$ for every $u \in$ $V(C_4 \times P_n) - S_1$. Hence, $\gamma_{cer}(C_4 \times P_n) = |S_1| = n$.

Theorem 3.6:For $n \ge 2$, $\gamma_{cer}(C_3 \times C_n) = \left|\frac{3n}{4}\right|$.

Proof:Let $V(C_3 \times C_n) = \{(u_1, v_i), (u_2, v_i), (u_3, v_i) : 1 \le i \le n\}$ be the set of vertices of the first, second, third row respectively. We prove this theorem by considering two cases.

Case (i). Let n=2. Consider the set $S = \{(u_1, v_1), (u_2, v_1), (u_3, v_3)\}$. Clearly the set S is a minimum dominating set of $C_3 \times C_n$. Hence, $\gamma_{cer}(C_3 \times C_n) = |S| = 3 = \left\lfloor \frac{3n}{4} \right\rfloor$.

Case (ii). Let $n \equiv 0 \pmod{4}$. Consider the set $S_1 = \{(u_1, v_i): i = 4p + 1, 1 \le p \le \lfloor \frac{n-3}{4} \rfloor, n \ge 8, n \ge 1, n \le 1$ (u_2, v_i) , $i = 4p - 2, 1 \le p \le \frac{n-2}{4}$. Clearly, the set S_1 is a minimum dominating set of $C_3 \times C_n$ and every vertex in S_1 has greater than two neighbours in $V(C_3 \times C_n) - S_1$. Therefore, that S_1 is a minimum certified dominating set of $C_3 \times C_n$ and hence, $\gamma_{cer}(C_3 \times C_n) = |S_1| = \left\lceil \frac{3n}{4} \right\rceil$

Results 3.7:
(i) For
$$n \ge 2$$
, $\gamma_{cer}(C_4 \times C_n) = n$.
(ii) For $n \ge 5$, $\gamma_{cer}(C_3 \times C_n) = \begin{cases} n & if \ n \equiv 0 \pmod{5} \\ n+2 & if \ n \equiv 3 \pmod{5} \\ n+1 & 0 therwise \end{cases}$

References:

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, (1990). [2] S. Durai Raj, S.G. ShijiKumari and A.M. Anto, On the Certified Domination Number of Graphs, Journal of Information and Computation I Science 10, 331 [339 (2020).

- [3] M. Dettlaft, M. Lemansko, J. Topp, R.Ziemann and P. Zylinski, Certified Domination, AKCE International Journal of Graphs and Combinactorics (Article in press), (2018).
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1998).
- [5] PolanaPalvic, JanezZerovnik, A note on the Domination Number of the Cartesian Product of Paths and Cycles, Krangujevac Journal of Mathematics 37(2), P141 (2011).
- [6] Sergio CanoyJr, CarmelitoE.Go, Domination in the Corona and Join of Graphs, International Mathematical Forum 6(13), (2011).
- [7] D.B. West, Introduction to Graph Theory, Second Ed., Prentice-Hall, Upper Saddle River, NJ,(2001).