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ABSTRACT

A set S of vertices in G = (V, E) is called a dominating set of G if every vertex not in S
has at least one neighbour in S. A dominating set S of a graph G is said to be a certified
dominating set of G if every vertex in S has either zero or at least two neighbours in V\S.
The certified domination number, ¥, (G)of G is defined as the minimum cardinality of
certified dominating set of G. In this paper, we study the certified domination number of
Cartesian product of some standard graphs.
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1. Introduction
In this paper, graph G = (V,E) we mean a simple, finite, connected, undirected graph with neither loops nor
multiple edges. The order |V (G)] is denoted by n. For graph theoretic
terminology we refer to West [7]. The open neighborhood of any vertex v in G is N(v) ={x : xv € E(G)} and
closed neighborhood of a vertex vin G is N[v] = N(v) U {v}. The
degree of a vertex in the graph G is denoted by deg(v) and the maximum degree (minimum
degree) in the graph G is denoted by A(G) (6(G)). For a set S € V (G) the open (closed)
neighborhood N(S)(N[S]) in G is defined as N(S) = Upes N(v) (N[S] = Uyes N[V]. We write
K., P,, and C, for a complete graph, a path graph, a cycle graph of order n, respectively.
The complement of a graph G, denoted by G,isa graph with the vertex set V (G) such that

for every two vertices v and w, vw € E(G) if and only if vw & E(G).

The concept of certified domination in graphs was introduced by Dettlaff, Lemanska,
Topp, Ziemann and Zylinski[3] and further studied in[2]. It has many application in real
life situations. This motivated we to study the certified domination number in corona and
Cartesian product of graphs.

In [3], authors studied certified dominaiton number in graphs which is defined as follows: Definition 1.1. Let G
= (V, E) be any graph of order n. A subset S € V (G) is called a Certified dominating set of G if S is a
dominating set of G and every vertex in S has either

zero or at least two neighbours in V\S. The certified domination number defined by Y, (G)is the minimum
cardinality of certified dominating set in G.

2. Known Results:

Theorem 2.1: [2] For any graph G of order n > 2, every certified dominating set of G
contains its extreme vertices.

Theorem 2.2: [2] For any graph G of order n, 1 < ¥, (G) <n.

Theorem 2.3: [2] For any graph G of order n = 3, y,,,-(G)= 1 if and only if G has a vertex
of degree n - 1.

Theorem 2.4: [3] For any Path graph B, of order n>1,
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lifn=1o0r3
Yeer (G) =1 2 ifn=2
4 ifn=4

Yeer (G) = E]if n>s.
Theorem 2.5: [3] For the Cycle graph C,, (n1>3), ¥eer(G) = E]

3. Cartesian Product of Graphs

The Cartesian graph product G; X G,called graph product of graphs with disjoint vertex sets and edge sets
and is the graph with the vertex set V; X V, and u = (u,, u,) adjacent with v = (v;, v,) whenever [u; = v,
and u, adjacent to v,] or [u, = v, and u; adjacent to v,].

Theorem 3.1:For n>3, ¥ (P, X B,) = lnT”J
Proof: Let V(P, X B,) = {(uy, v;), (uy, v;):1 < i < n}be the set of vertices of the first and
second row, respectively. We prove this theorem by considering six cases.

Case (i). Let n=2. Consider the set S = {(u,, v;), (u4, v,)}. Clearly the set S is a minimum dominating
set of P, X P,and each vertices in S has exactly two neighbours in
V(P, X P,) — S. Hence, Yoor (P, X P,) = |S|=2 =["T+2]

Case (ii). Let n=3. Consider the set S; = {(uq, v;), (u,, v3)}. Clearly the set S; is a minimum dominating
set of P, X P,and each vertices in S; has exactly two neighbours in
n+2

V(P, X B,) — S;. Hence, y e (P, X B) = | S1|=2= |
Case (iii). Let n be even and n = 0(mod 4). Consider the set S, = {(ul, v,), (U, v;)ii=4p—1,1<p < %,
(uy, v;)ii=4p—3, 1<p < Z}.Cleaﬂy, the set S,is a minimum dominating set of P, X P,and|N(u) N S,| =

2 for every u € V(P X By) — S;. Hence, Yeer (P X By) =1 531 = |

n+2

|
Case (iv). Let n be even and n # 0(mod 4).Consider the setS; = {(ul, v;):i=4p—1,1<p< [HT_Z‘] ,
(uy, v;):i=4p—3, 1<p < [nT_l]}.Clearly, the set S;is a minimum dominating set of P, X B, and|N(u) N
S;| = 2 forevery u € V(P, X B,) — S3. Hence, Yeer (P, X By) = | S3] = lnT“J
Case (v). Let n be odd and n = 1(mod 4).Consider the setS, = {(ul, v):ii=4p—1,1<p< [nT_Z ,

(up, v)):i=4p—3, 1<p< [nT_ll}.Clearly, the set S, is a minimum dominating set of P, X B, and|N (u) N
)
|

Case (vi). Let n be odd and n # 1(mod 4).Consider the setSs = {(ul, v):ii=4p—-1,1<p< E],

Sl =2 foreveryu € V(P, X B,) — S,. Hence, Y or (P, X B) = | Syl =

(uy, v;):i=4p—3, 1<p < [nT_zl}.Clearly, the set S is a minimum dominating set of P, X B, and|N(u) N
Sg| = 2 foreveryu € V(P, X B,) — Ss. Hence, Yeer (P, X By) = | S5| = lnT“J

3n+4

Theorem 3.2:For n=>3, .., (P; X B,) = lT .

Proof: Let V(P; X B,) = {(uy, v;), (uy, v;), (us, v;) :+ 1 < i < n}be the set of vertices of the first and second
row, third row respectively. We prove this theorem by considering five cases.

Case (i). Let n=3. Consider the setS = {(u;, v1), (uz, v,), (U3, v3). Clearly that S is a minimum
dominating set of P; X P,and each vertices in S has exactly two neighbours in

V(Py X By) = S. Hence, yeer (Py X By) = 151=3 =| 27|,

Case (ii). Let n =0(mod4). Consider the setS; = {(ul, v;),(us, v;)ii=4p—1,1<p < [

n-1
4 )
(Up, v)):i=4p—3, 1<p < [nT%]} Clearly, the set S; is a minimum dominating set of P; X B, and|N(u) N

Si| = 2 foreveryu € V(P; X B,) — S;. Hence, Y o (Ps X B,) = | $4| = l3n4+4J
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Case (iii). Let n =1(mod 4). Consider the setS, = {(ul, V), (us, v):i=4p—1,1<p < [714;2 ,
(Up, v)):i=4p—3, 1<p < E]} Clearly, the set S, is a minimum dominating set of P; X P, and|N(u) N
S,| = 2 foreveryu € V(P; X B,) — S,. Hence, Yeer (Ps X By) = | S| = l3n4+4J
Case (iv). Let n = 2(mod 4). Consider the setS; = {(ul, v),(usg, v)ii=4p—-—1,1<p< [

n-3

4 )
(uy, v;)ii=4p—3, 1<p < [nT_l] , (Uuy, vn)}. Clearly, the set S; is a minimum dominating set of P; X
Py and|N(u) 0 S;| 2 2 for every u € V(Py X By) — S3. Hence, Yeer (Py X By) = | Sal = [
Case (v). Let n = 3(mod 4). Consider the setS, = {(ul, v;),(us, v;)ii=4p—1,1<p < [nT_A'],

(Up, v)):i=4p—3, 1<p < [nT_Zl , Uy, v), (uy, vn_l)}. Clearly, the set S, is a minimum dominating set of

P; X P,and|N(u) N S,| = 2 forevery u € V(P; X B,) — S,. Hence, Y o (Ps X B,) = | S4| = lgn4+4J.

Theorem 3.3:For n=> 4, y,., (P; X Pn):{nn+ 1 g gt; rs\;ii’e 9.

Proof: Let V(P, X B,) = {(uq, vy), (uy, v;), (uz, v;), (uy, v;) : 1 <i <n}be the set of vertices of the first,
second, third and fourth row respectively. We prove this theorem by considering four cases.

Case (i). Let n = 5 or 9. Consider the setS = {(uy, v)),:i=4p—1,1<p <[22, (us, v):i=4p-3, 1<

p < E“ Clearly, the set S is a minimum dominating set of P, X P, and|N(u) NS| =2 for every u €

V(P, X B,) — S.Hence, yer (P, X B) = |S| =n+ 1.

Case (ii). Let n = 6. Consider the
setS; = {(ul, v),:i=4p—-2,1<p < E], (uyz, vy), (uz, v1), (Us, Ve), (Uy, v3), (Uy, vs)}. Clearly, the set
S, is a minimum dominating set of P, X B, and|N(u) n S;| =2 for every u € V(P, X P,) — S;. Hence,
ycer(le- X Pn) = |51| =n+1

Case (iii). Let n = 0(mod 4). Consider the set S, = {(ul, v),:i=4p—-2,1<p< Z, (uy, v;):i =4p —

1, 1<p< %} Clearly, the set S, is a minimum dominating set of P, X P, and|N(u) n S,| = 2 for every
u €V(P, X B) — S,.Hence, Y er (P, X By) = | S5 = n.

Case (iv). Let n # 0(mod 4) and n # 5,6,9. Now we split P, X B,into k number of P, X P,and P, X P,
blocks B;in 1 < i < k such that k is maximum. Also, assume, |V (B;)| = |V(B;+1)land V(B;) N V(B;;.,) = 0.
Let us consider the vertices of P, X P, as V(P, X P,) = {(ui, vj), 1<i=j <4} and the vertices P, X P;as
V(P, x P3) = {(p, q]-), 1<i<4,1<j<3} Let S={(us v) (uy, v3), (U, vy), (uy, v3)}is a minimum
certified dominating set of each B; in P, X P,. We consider the following three sub-cases:

Sub-case (i): Blocks B; contains only one copy of P, X P;.

Let U ={(p. q.), (03, q3), (s, q1)} be the set of vertices belongs to P, X P;block. Then,
the set S U U is the minimum certified domination set of P, X B, and s0 Y. (P, X B,) = n.

Sub-case (ii): Blocks B; contains two copies of P, X P, say (B;, Bj;1)-

Let L={(p. q1),®s q3), s, q1)} be the set of vertices belongs to Bjand let
M = {(p1, 91), (P2, q3), (P4, q2)}be the set of vertices belongs to Bj41. Then
the set S U L U M is the minimum certified domination set of P, X B, and s0 Y. (P4 X B,) = n.

Sub-case (iii): Blocks B; contains two copies of P, X Ps, say (B;, Bj+1, Bi+2)-

Let N ={(i, 92), (p3s, 93), (P4, q1)} be the set of vertices belongs to B;and B;,, and let
0 ={(p1, 91), 02, q3), (P4, q2)}be the set of vertices belongs t0 Bj 1. Then
the set S U N U O is the minimum certified domination set of P, X B, and so Y,e- (P, X B,) = n.

[3—n] +1 ifn =00(mod4)
Theorem 3.4:For n>2, .. (C5 X B,)= :n
[T] otherwise

Proof:Let V(C; X B,) = {(uq, v;), (Uy, v;), (ug, v;) : 1 < i < n}be the set of vertices of the first, second and
third row respectively. We prove this theorem by considering six cases.

Case (i). Let n=2. Consider the set S = {(uy, v;), (u;, v,)}. Clearly the set S is a minimum dominating
set of C; X P,and each vertices in S has exactly two neighbours in

3
V(Cs X Pn) — S. Hence, ycer(Cs X Pn) = |SI= 3=[Tn]'
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Case (ii). Let n=3. Consider the set S; = {(u;, v3), (u;, v,), (us, v1)}. Clearly the setS; is a minimum
dominating set of C3 X B, and |[N(u) N S;| = 2 for every u € V(C5 X B,) — S;. Hence, y..-(C3 X B,) = | S;|=

3n
3=

Case (iii). Let n = 0(mod 4). Consider the
set S, = {(ul, v),:i=4p—-3,1<p< [HT_gl,(uz, v;),(uz, v;): i=4p—1, 1<p < [nT_Z’]} Clearly, the

set S, is a minimum dominating set of C; X P, and|N(u) N S,| = 2 for every u € V(C; X B,) — S,. Hence,
3
Yeer (C3 X Py) = | 53| = [Tn] + 1

Case (iv). Let n = 1(mod 4). Consider the setS; = {(ul, V;),:i=4p—3,1<p < E],(uz, v;), (us, v;) :
i=4p—-1, 1<p< [nT_Zl} Clearly, the set S; is a minimum dominating set of C3 X B, and|N(u) N S5| =2
for every u € V(C3 X B,) — Ss. Hence, y,-(C3 X B,) = | S5| = [%n]

Case ). Let n = 2(mod 4). Consider the
set Sy = {(uy, v), i =4p—3,1<p <[], (up v), (g, v) s i =4p—1, 1<p<[=2|}. Clearly, the
set S, is a minimum dominating set of C; X P, and|N(u) N S| = 2 for every u € V(C; X B,) — S,. Hence,
Veer (C3 X By) = 15,1 = [2]

Case (v). Let n = 3(mod 4). Consider the set Ss = {(ul, 1;),:i=4p—3,1<p < [nT_Z],(uZ, v;), (us, v;) :
i=4p—1, 1<p< E]} Clearly, the set Ss is a minimum dominating set of C; X B, and|N(u) N Sg| = 2 for
every u € V(C3 X B,) — Ss. Hence, ¥eer (C3 X B) = | S5| = [?]

Theorem 3.5:For n>2, y,,,(C, X B,) = n.
Proof:Let V(C, X B,) = {(uy, v;), (Uuy, vy), (us, v;), (uz, v;) : 1 <i <n}be the set of vertices of the first,
second, third and fourth row respectively. We prove this theorem by considering two cases.

Case (i). Let n be even. Consider the set S = {(uz, v;),:i=2p—1,1<p< [nT_ll Uy, ) i=2p, 1<p <

g} Clearly the set S is a minimum dominating set of C, X B, and [N(u) N S| = 2 foreveryu € V(C, X B,) — S.
Hence, Yo (C4 X B,) = |S| = n.
Case (ii). Let n be odd. Consider the setS; = {(uz, v),:i=2p—1,1<p< E],(u4, v;) i =2p,

1<p< E]} Clearly the set S; is a minimum dominating set of C, X P, and |[N(u) N S;| = 2 for everyu €
V(C, X B,) — S;. Hence, Yo (Cy X B,) = |S;| = n.

Theorem 3.6:For n>2, y,..(C; X C,) = PT”]

Proof:Let V(C5; X C,) = {(uy, vy), (uy, v;), (us, v;) : 1 < i < n}be the set of vertices of the first, second, third
row respectively. We prove this theorem by considering two cases.

Case (i). Let n=2. Consider the set S = {(u,, v;), (Uy, V1), (uz, v3)}. Clearly the set S is a minimum dominating
set of C3 X C,. Hence, V.. (C5 X C,,) = |S|= 3=PT"].

Case (ii). Let n =0(mod 4). Consider the setS; = {(ul, v):i=4p+1,1<p< [nT—sl ,n =8,

(uy, v1),:i=4p—2,1<p < nT—z} Clearly, the set S; is a minimum dominating set of C3 X C, andevery
vertex in S; has greater than two neighbours in V(C5 X C,,) — S;. Therefore, that S; is a minimum certified
dominating set of C3 X C,, and hence, ¥, (C3 X C,,) = | S1|= PT"]

Results 3.7:
6)) For n=2, ¥, (C, X C,) = n.
n if n = 0(mod 5)
(ii) For n>5, yeer (C3 X Cy) ={n+ 2 if n = 3(mod 5)
n+1 Otherwise

References:

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, (1990).
[2] S. Durai Raj, S.G. ShijiKumari and A.M. Anto, On the Certified Domination Number
of Graphs, Journal of Information and Computationl Science 10, 331{339 (2020).

1169



S. Durai Raj' and S.G. Shiji Kumari*

[3] M. Dettlaft, M. Lemansko, J. Topp, R.Ziemann and P. Zylinski, Certified Domination,
AKCE International Journal of Graphs and Combinactorics (Article in press), (2018).

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater Fundamentals of Domination in Graphs,
Marcel Dekker,Inc., New York, (1998).

[5] PolanaPalvic, JanezZerovnik, A note on the Domination Number of the Cartesian
Product of Paths and Cycles, Krangujevac Journal of Mathematics 37(2), P141 (2011).

[6] Sergio CanoylJr, CarmelitoE.Go, Domination in the Corona and Join of Graphs, Inter-

national Mathematical Forum 6(13), (2011).

[7] D.B. West, Introduction to Graph Theory, Second Ed., Prentice-Hall, Upper Saddle
River, NJ,(2001).

1170



