Certified Domination Number in Product of Graphs

S. Durai Raj ${ }^{1}$ and S.G. Shiji Kumari ${ }^{2}$
${ }^{1}$ Associate Professor and Principal,Department of Mathematics, Pioneer Kumaraswami College, Nagercoil - 629003,Tamil Nadu, India.
${ }^{2}$ Research Scholar, Reg No: 19213132092002,Department of Mathematics, Pioneer Kumaraswami College, Nagercoil 629003, Tamil Nadu, India.
Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli - 627012,
Tamil Nadu, India.
Email : durairajsprincpkc@gmail.com ${ }^{1}$, nazarethprince1977@gmail.com ${ }^{2}$

Abstract

A set S of vertices in $G=(V, E)$ is called a dominating set of G if every vertex not in S has at least one neighbour in S. A dominating set S of a graph G is said to be a certified dominating set of G if every vertex in S has either zero or at least two neighbours in $V \backslash S$. The certified domination number, $\gamma_{c e r}(G)$ of G is defined as the minimum cardinality of certified dominating set of G. In this paper, we study the certified domination number of Cartesian product of some standard graphs.

Keywords: Dominating set, Certified Dominating set, Certified Domination Number, Cartesian product. Subject Classification Number: AMS-05C05, 05C.

1. Introduction

In this paper, graph $G=(V, E)$ we mean a simple, finite, connected, undirected graph with neither loops nor multiple edges. The order $|\mathrm{V}(\mathrm{G})|$ is denoted by n . For graph theoretic terminology we refer to West [7]. The open neighborhood of any vertex v in G is $N(v)=\{x: x v \in E(G)\}$ and closed neighborhood of a vertex v in G is $N[v]=N(v) \cup\{v\}$. The degree of a vertex in the graph G is denoted by $\operatorname{deg}(v)$ and the maximum degree (minimum degree) in the graph G is denoted by $\Delta(G)(\delta(G))$. For a set $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ the open (closed) neighborhood $\mathrm{N}(\mathrm{S})(\mathrm{N}[\mathrm{S}])$ in G is defined as $\mathrm{N}(\mathrm{S})=\mathrm{U}_{v \in S} \mathrm{~N}(\mathrm{v})\left(\mathrm{N}[\mathrm{S}]=\mathrm{U}_{v \in S} \mathrm{~N}[\mathrm{v}]\right.$. We write K_{n}, P_{n}, and C_{n} for a complete graph, a path graph, a cycle graph of order n, respectively. The complement of a graph G , denoted by \bar{G}, is a graph with the vertex set $\mathrm{V}(\mathrm{G})$ such that for every two vertices v and $w, ~ v w ~ \in E(\bar{G})$ if and only if $v w \notin \mathrm{E}(\bar{G})$.

The concept of certified domination in graphs was introduced by Dettlaff, Lemanska, Topp, Ziemann and Zylinski[3] and further studied in[2]. It has many application in real life situations. This motivated we to study the certified domination number in corona and Cartesian product of graphs.

In [3], authors studied certified dominaiton number in graphs which is defined as follows: Definition 1.1. Let G $=(\mathrm{V}, \mathrm{E})$ be any graph of order n . A subset $\mathrm{S} \subseteq \mathrm{V}(\mathrm{G})$ is called a Certified dominating set of G if S is a dominating set of G and every vertex in S has either
zero or at least two neighbours in $V \backslash S$. The certified domination number defined by $\gamma_{c e r}(G)$ is the minimum cardinality of certified dominating set in G.

2. Known Results:

Theorem 2.1: [2] For any graph G of order $n \geq 2$, every certified dominating set of G contains its extreme vertices.

Theorem 2.2: [2] For any graph G of order $\mathrm{n}, 1 \leq \gamma_{c e r}(G) \leq \mathrm{n}$.
Theorem 2.3: [2] For any graph G of order $n \geq 3, \gamma_{c e r}(G)=1$ if and only if G has a vertex of degree $\mathrm{n}-1$.

Theorem 2.4: [3] For any Path graph P_{n} of order $\mathrm{n} \geq 1$,

$$
\gamma_{c e r}(G)= \begin{cases}1 \text { if } n=1 \text { or } 3 \\ 2 & \text { if } n=2 \\ 4 & \text { if } n=4\end{cases}
$$

$\gamma_{c e r}(G)=\left\lceil\frac{n}{3}\right\rceil$ if $n \geq 5$.
Theorem 2.5: [3] For the Cycle graph $C_{n}(\mathrm{n} \geq 3), \gamma_{c e r}(G)=\left\lceil\frac{n}{3}\right\rceil$.

3. Cartesian Product of Graphs

The Cartesian graph product $G_{1} \times G_{2}$ called graph product of graphs with disjoint vertex sets and edge sets and is the graph with the vertex set $V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever [$u_{1}=v_{1}$ and u_{2} adjacent to $\left.v_{2}\right]$ or $\left[u_{2}=v_{2}\right.$ and u_{1} adjacent to $\left.v_{1}\right]$.

Theorem 3.1:For $\mathrm{n} \geq 3, \gamma_{\text {cer }}\left(P_{2} \times P_{n}\right)=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Proof: Let $V\left(P_{2} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right): 1 \leq i \leq n\right\}$ be the set of vertices of the first and second row, respectively. We prove this theorem by considering six cases.

Case (i). Let $\mathrm{n}=2$. Consider the set $S=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}$. Clearly the set S is a minimum dominating set
of $\quad P_{2} \times P_{n}$ and each vertices in S has exactly two neighbours in $V\left(P_{2} \times P_{n}\right)-S$. Hence, $\gamma_{c e r}\left(P_{2} \times P_{n}\right)=|S|=2=\left\lfloor\frac{n+2}{2}\right\rfloor$.

Case (ii). Let $\mathrm{n}=3$. Consider the set $S_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{3}\right)\right\}$. Clearly the set S_{1} is a minimum dominating set

of

 $P_{2} \times P_{n}$ and each vertices in S_{1} has exactly two neighbours in $V\left(P_{2} \times P_{n}\right)-S_{1}$. Hence, $\gamma_{c e r}\left(P_{2} \times P_{n}\right)=\left|S_{1}\right|=2=\left\lfloor\frac{n+2}{2}\right\rfloor$.Case (iii). Let n be even and $n \equiv 0(\bmod 4)$. Consider the set $S_{2}=\left\{\left(u_{1}, v_{n}\right),\left(u_{1}, v_{i}\right): i=4 p-1,1 \leq p \leq \frac{n}{4}\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq \frac{n}{4}\right\}$.Clearly, the set S_{2} is a minimum dominating set of $P_{2} \times P_{n}$ and $\left|N(u) \cap S_{2}\right| \geq$ 2 for every $u \in V\left(P_{2} \times P_{n}\right)-S_{2}$. Hence, $\gamma_{c e r}\left(P_{2} \times P_{n}\right)=\left|S_{2}\right|=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Case (iv). Let n be even and $n \not \equiv 0(\bmod 4)$. Consider the set $S_{3}=\left\{\left(u_{1}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil\right\}$.Clearly, the set S_{3} is a minimum dominating set of $P_{2} \times P_{n}$ and $\mid N(u) \cap$ $S_{3} \mid \geq 2$ for every $u \in V\left(P_{2} \times P_{n}\right)-S_{3}$. Hence, $\gamma_{c e r}\left(P_{2} \times P_{n}\right)=\left|S_{3}\right|=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Case (v). Let n be odd and $n \equiv 1(\bmod 4)$. Consider the set $S_{4}=\left\{\left(u_{1}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil\right\}$.Clearly, the set S_{4} is a minimum dominating set of $P_{2} \times P_{n}$ and $\mid N(u) \cap$ $S_{4} \mid \geq 2$ for every $u \in V\left(P_{2} \times P_{n}\right)-S_{4}$. Hence, $\gamma_{c e r}\left(P_{2} \times P_{n}\right)=\left|S_{4}\right|=\left\lfloor\frac{n+2}{2}\right\rfloor$.
Case (vi). Let n be odd and $n \not \equiv 1(\bmod 4)$. Consider the set $S_{5}=\left\{\left(u_{1}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil\right\}$.Clearly, the set S_{5} is a minimum dominating set of $P_{2} \times P_{n}$ and $\mid N(u) \cap$ $S_{5} \mid \geq 2$ for every $u \in V\left(P_{2} \times P_{n}\right)-S_{5}$. Hence, $\gamma_{c e r}\left(P_{2} \times P_{n}\right)=\left|S_{5}\right|=\left\lfloor\frac{n+2}{2}\right\rfloor$.

Theorem 3.2: For $\mathrm{n} \geq 3, \gamma_{c e r}\left(P_{3} \times P_{n}\right)=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.
Proof: Let $V\left(P_{3} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right): 1 \leq i \leq n\right\}$ be the set of vertices of the first and second row, third row respectively. We prove this theorem by considering five cases.

Case (i). Let $\mathrm{n}=3$. Consider the set $S=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right)\right.$. Clearly that S is a minimum dominating set of $\quad P_{3} \times P_{n}$ and each vertices in S has exactly two neighbours in $V\left(P_{3} \times P_{n}\right)-S$. Hence, $\gamma_{c e r}\left(P_{3} \times P_{n}\right)=|S|=3=\left\{\frac{3 n+4}{2}\right\rfloor$.
Case (ii). Let $n \equiv 0(\bmod 4)$. Consider the set $S_{1}=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil\right\}$. Clearly, the set S_{1} is a minimum dominating set of $P_{3} \times P_{n}$ and $\mid N(u) \cap$ $S_{1} \mid \geq 2$ for every $u \in V\left(P_{3} \times P_{n}\right)-S_{1}$. Hence, $\gamma_{c e r}\left(P_{3} \times P_{n}\right)=\left|S_{1}\right|=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.

Case (iii). Let $n \equiv 1(\bmod 4)$. Consider the set $S_{2}=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil\right\}$. Clearly, the set S_{2} is a minimum dominating set of $P_{3} \times P_{n}$ and $\mid N(u) \cap$ $S_{2} \mid \geq 2$ for every $u \in V\left(P_{3} \times P_{n}\right)-S_{2}$. Hence, $\gamma_{c e r}\left(P_{3} \times P_{n}\right)=\left|S_{2}\right|=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.

Case (iv). Let $n \equiv 2(\bmod 4)$. Consider the $\operatorname{set} S_{3}=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{2}, v_{n}\right)\right\}$. Clearly, the set S_{3} is a minimum dominating set of $P_{3} \times$ P_{n} and $\left|N(u) \cap S_{3}\right| \geq 2$ for every $u \in V\left(P_{3} \times P_{n}\right)-S_{3}$. Hence, $\gamma_{c e r}\left(P_{3} \times P_{n}\right)=\left|S_{3}\right|=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.

Case (v). Let $n \equiv 3(\bmod 4)$. Consider the set $S_{4}=\left\{\left(u_{1}, v_{i}\right),\left(u_{3}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-4}{4}\right\rceil\right.$, $\left.\left(u_{2}, v_{i}\right): i=4 p-3,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{2}, v_{n}\right),\left(u_{2}, v_{n-1}\right)\right\}$. Clearly, the set S_{4} is a minimum dominating set of $P_{3} \times P_{n}$ and $\left|N(u) \cap S_{4}\right| \geq 2$ for every $u \in V\left(P_{3} \times P_{n}\right)-S_{4}$. Hence, $\gamma_{c e r}\left(P_{3} \times P_{n}\right)=\left|S_{4}\right|=\left\lfloor\frac{3 n+4}{4}\right\rfloor$.

Theorem 3.3: For $\mathrm{n} \geq 4, \gamma_{c e r}\left(P_{3} \times P_{n}\right)=\left\{\begin{array}{cc}\mathrm{n}+1 & \text { if } \mathrm{n}=5,6,9 \text {. } \\ \mathrm{n} \quad & \text { if otherwise. }\end{array}\right.$
Proof: Let $V\left(P_{4} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right),\left(u_{4}, v_{i}\right): 1 \leq i \leq n\right\}$ be the set of vertices of the first, second, third and fourth row respectively. We prove this theorem by considering four cases.

Case (i). Let $n=5$ or 9 . Consider the set $S=\left\{\left(u_{1}, v_{i}\right),: i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{3}, v_{i}\right): i=4 p-3,1 \leq\right.$ $\left.p \leq\left[\frac{n}{4}\right]\right\}$. Clearly, the set S is a minimum dominating set of $P_{4} \times P_{n}$ and $|N(u) \cap S| \geq 2$ for every $u \in$ $V\left(P_{4} \times P_{n}\right)-S$. Hence, $\gamma_{\text {cer }}\left(P_{4} \times P_{n}\right)=|S|=n+1$.

Case (ii). Let $n=6$. Consider the set $S_{1}=\left\{\left(u_{1}, v_{i}\right),: i=4 p-2,1 \leq p \leq\left\lceil\frac{n}{4}\right\rceil,\left(u_{2}, v_{4}\right),\left(u_{3}, v_{1}\right),\left(u_{3}, v_{6}\right),\left(u_{4}, v_{3}\right),\left(u_{4}, v_{5}\right)\right\}$. Clearly, the set S_{1} is a minimum dominating set of $P_{4} \times P_{n}$ and $\left|N(u) \cap S_{1}\right| \geq 2$ for every $u \in V\left(P_{4} \times P_{n}\right)-S_{1}$. Hence, $\gamma_{c e r}\left(P_{4} \times P_{n}\right)=\left|S_{1}\right|=n+1$.

Case (iii). Let $n \equiv 0(\bmod 4)$. Consider the set $S_{2}=\left\{\left(u_{1}, v_{i}\right),: i=4 p-2,1 \leq p \leq \frac{n}{4},\left(u_{4}, v_{i}\right): i=4 p-\right.$ 1, $\left.1 \leq p \leq \frac{n}{4}\right\}$. Clearly, the set S_{2} is a minimum dominating set of $P_{4} \times P_{n}$ and $\left|N(u) \cap S_{2}\right| \geq 2$ for every $u \in V\left(P_{4} \times P_{n}\right)-S_{2}$. Hence, $\gamma_{c e r}\left(P_{4} \times P_{n}\right)=\left|S_{2}\right|=n$.

Case (iv). Let $n \not \equiv 0(\bmod 4)$ and $n \neq 5,6,9$. Now we split $P_{4} \times P_{n}$ into k number of $P_{4} \times P_{4}$ and $P_{4} \times P_{3}$ blocks B_{i} in $1 \leq i \leq k$ such that k is maximum. Also, assume, $\left|V\left(B_{i}\right)\right| \geq\left|V\left(B_{i+1}\right)\right|$ and $V\left(B_{i}\right) \cap V\left(B_{i+1}\right)=\emptyset$. Let us consider the vertices of $P_{4} \times P_{4}$ as $V\left(P_{4} \times P_{4}\right)=\left\{\left(u_{i}, v_{j}\right), 1 \leq i=j \leq 4\right\}$ and the vertices $P_{4} \times P_{3}$ as $V\left(P_{4} \times P_{3}\right)=\left\{\left(p_{i}, q_{j}\right), 1 \leq i \leq 4,1 \leq j \leq 3\right\}$. Let $S=\left\{\left(u_{3}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{4}\right),\left(u_{4}, v_{3}\right)\right\}$ is a minimum certified dominating set of each B_{i} in $P_{4} \times P_{4}$. We consider the following three sub-cases:

Sub-case (i): Blocks B_{i} contains only one copy of $P_{4} \times P_{3}$.
Let $U=\left\{\left(p_{1}, q_{1}\right),\left(p_{3}, q_{3}\right),\left(p_{4}, q_{1}\right)\right\}$ be the set of vertices belongs to $P_{4} \times P_{3}$ block. Then, the set $S \cup U$ is the minimum certified domination set of $P_{4} \times P_{n}$ and so $\gamma_{c e r}\left(P_{4} \times P_{n}\right)=n$.
Sub-case (ii): Blocks B_{i} contains two copies of $P_{4} \times P_{3}$, say (B_{i}, B_{i+1}).
Let $L=\left\{\left(p_{1}, q_{1}\right),\left(p_{3}, q_{3}\right),\left(p_{4}, q_{1}\right)\right\}$ be the set of vertices belongs to B_{i} and let $M=\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{3}\right),\left(p_{4}, q_{2}\right)\right\}$ be the set of vertices belongs to B_{i+1}. Then the set $S \cup L \cup M$ is the minimum certified domination set of $P_{4} \times P_{n}$ and so $\gamma_{c e r}\left(P_{4} \times P_{n}\right)=n$.
Sub-case (iii): Blocks B_{i} contains two copies of $P_{4} \times P_{3}$, say (B_{i}, B_{i+1}, B_{i+2}).
Let $N=\left\{\left(p_{1}, q_{2}\right),\left(p_{3}, q_{3}\right),\left(p_{4}, q_{1}\right)\right\}$ be the set of vertices belongs to B_{i} and B_{i+2} and let $O=\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{3}\right),\left(p_{4}, q_{2}\right)\right\}$ be the set of vertices belongs to B_{i+1}. Then the set $S \cup N \cup O$ is the minimum certified domination set of $P_{4} \times P_{n}$ and so $\gamma_{c e r}\left(P_{4} \times P_{n}\right)=n$.

Theorem 3.4: For $\mathrm{n} \geq 2, \gamma_{c e r}\left(C_{3} \times P_{n}\right)=\left\{\begin{array}{lr}\left\lceil\frac{3 n}{4}\right\rceil+1 & \text { if } n \equiv 0(\bmod 4) \\ \left\lceil\frac{3 n}{4}\right\rceil & \text { otherwise }\end{array}\right.$
Proof:Let $V\left(C_{3} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right): 1 \leq i \leq n\right\}$ be the set of vertices of the first, second and third row respectively. We prove this theorem by considering six cases.

Case (i). Let $\mathrm{n}=2$. Consider the set $S=\left\{\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right)\right\}$. Clearly the set S is a minimum dominating set of $C_{3} \times P_{n}$ and each vertices in S has exactly two neighbours in $V\left(C_{3} \times P_{n}\right)-S$. Hence, $\gamma_{c e r}\left(C_{3} \times P_{n}\right)=|S|=3=\left\lceil\frac{3 n}{4}\right\rceil$.

Case (ii). Let $\mathrm{n}=3$. Consider the set $S_{1}=\left\{\left(u_{1}, v_{3}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{1}\right)\right\}$. Clearly the set S_{1} is a minimum dominating set of $C_{3} \times P_{n}$ and $\left|N(u) \cap S_{1}\right| \geq 2$ for every $u \in V\left(C_{3} \times P_{n}\right)-S_{1}$. Hence, $\gamma_{c e r}\left(C_{3} \times P_{n}\right)=\left|S_{1}\right|=$ $3=\left\lceil\frac{3 n}{4}\right\rceil$.

Case (iii). Let $n \equiv 0(\bmod 4)$. Consider the set $S_{2}=\left\{\left(u_{1}, v_{i}\right),: i=4 p-3,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil,\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil\right\}$. Clearly, the set S_{2} is a minimum dominating set of $C_{3} \times P_{n}$ and $\left|N(u) \cap S_{2}\right| \geq 2$ for every $u \in V\left(C_{3} \times P_{n}\right)-S_{2}$. Hence, $\gamma_{c e r}\left(C_{3} \times P_{n}\right)=\left|S_{2}\right|=\left\lceil\frac{3 n}{4}\right\rceil+1$.

Case (iv). Let $n \equiv 1(\bmod 4)$. Consider the set $S_{3}=\left\{\left(u_{1}, v_{i}\right),: i=4 p-3,1 \leq p \leq\left[\frac{n}{4}\right],\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right):\right.$ $\left.i=4 p-1,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil\right\}$. Clearly, the set S_{3} is a minimum dominating set of $C_{3} \times P_{n}$ and $\left|N(u) \cap S_{3}\right| \geq 2$ for every $u \in V\left(C_{3} \times P_{n}\right)-S_{3}$. Hence, $\gamma_{c e r}\left(C_{3} \times P_{n}\right)=\left|S_{3}\right|=\left\lceil\frac{3 n}{4}\right\rceil$.

Case (v). Let $n \equiv 2(\bmod 4)$. Consider the set $S_{4}=\left\{\left(u_{1}, v_{i}\right),: i=4 p-3,1 \leq p \leq\left\lceil\frac{n-1}{4}\right\rceil,\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right): i=4 p-1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil\right\}$. Clearly, the set S_{4} is a minimum dominating set of $C_{3} \times P_{n}$ and $\left|N(u) \cap S_{4}\right| \geq 2$ for every $u \in V\left(C_{3} \times P_{n}\right)-S_{4}$. Hence, $\gamma_{c e r}\left(C_{3} \times P_{n}\right)=\left|S_{4}\right|=\left\lceil\frac{3 n}{4}\right\rceil$.
Case (v). Let $n \equiv 3(\bmod 4)$. Consider the set $S_{5}=\left\{\left(u_{1}, v_{i}\right),: i=4 p-3,1 \leq p \leq\left\lceil\frac{n-2}{4}\right\rceil,\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right)\right.$: $i=4 p-1,1 \leq p \leq\left\lceil\left.\frac{n}{4} \right\rvert\,\right\}$. Clearly, the set S_{5} is a minimum dominating set of $C_{3} \times P_{n}$ and $\left|N(u) \cap S_{5}\right| \geq 2$ for every $u \in V\left(C_{3} \times P_{n}\right)-S_{5}$. Hence, $\gamma_{c e r}\left(C_{3} \times P_{n}\right)=\left|S_{5}\right|=\left\lceil\frac{3 n}{4}\right\rceil$.

Theorem 3.5:For $\mathrm{n} \geq 2, \gamma_{\text {cer }}\left(C_{4} \times P_{n}\right)=n$.
Proof:Let $V\left(C_{4} \times P_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right),\left(u_{3}, v_{i}\right): 1 \leq i \leq n\right\}$ be the set of vertices of the first, second, third and fourth row respectively. We prove this theorem by considering two cases.
Case (i). Let n be even. Consider the set $S=\left\{\left(u_{2}, v_{i}\right),: i=2 p-1,1 \leq p \leq\left\lceil\frac{n-1}{2}\right\rceil,\left(u_{4}, v_{i}\right): i=2 p, 1 \leq p \leq\right.$ $\left.\frac{n}{2}\right\}$. Clearly the set S is a minimum dominating set of $C_{4} \times P_{n}$ and $|N(u) \cap S| \geq 2$ for every $u \in V\left(C_{4} \times P_{n}\right)-S$. Hence, $\gamma_{c e r}\left(C_{4} \times P_{n}\right)=|S|=n$.

Case (ii). Let n be odd. Consider the $\operatorname{set} S_{1}=\left\{\left(u_{2}, v_{i}\right),: i=2 p-1,1 \leq p \leq\left\lceil\frac{n}{2}\right\rceil,\left(u_{4}, v_{i}\right): i=2 p\right.$, $\left.1 \leq p \leq\left[\frac{n}{2}\right]\right\}$. Clearly the set S_{1} is a minimum dominating set of $C_{4} \times P_{n}$ and $\left|N(u) \cap S_{1}\right| \geq 2$ for every $u \in$ $V\left(C_{4} \times P_{n}\right)-S_{1}$. Hence, $\gamma_{c e r}\left(C_{4} \times P_{n}\right)=\left|S_{1}\right|=n$.

Theorem 3.6: For $\mathrm{n} \geq 2, \gamma_{\text {cer }}\left(C_{3} \times C_{n}\right)=\left\lceil\frac{3 n}{4}\right\rceil$.
Proof:Let $V\left(C_{3} \times C_{n}\right)=\left\{\left(u_{1}, v_{i}\right),\left(u_{2}, v_{i}\right),\left(u_{3}, v_{i}\right): 1 \leq i \leq n\right\}$ be the set of vertices of the first, second, third row respectively. We prove this theorem by considering two cases.
Case (i). Let $\mathrm{n}=2$. Consider the set $S=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{3}\right)\right\}$. Clearly the set S is a minimum dominating set of $C_{3} \times C_{n}$. Hence, $\gamma_{c e r}\left(C_{3} \times C_{n}\right)=|S|=3=\left\lceil\frac{3 n}{4}\right\rceil$.

Case (ii). Let $n \equiv 0(\bmod 4)$. Consider the set $S_{1}=\left\{\left(u_{1}, v_{i}\right): i=4 p+1,1 \leq p \leq\left\lceil\frac{n-3}{4}\right\rceil, n \geq 8\right.$, $\left.\left(u_{2}, v_{i}\right),: i=4 p-2,1 \leq p \leq \frac{n-2}{4}\right\}$. Clearly, the set S_{1} is a minimum dominating set of $C_{3} \times C_{n}$ andevery vertex in S_{1} has greater than two neighbours in $V\left(C_{3} \times C_{n}\right)-S_{1}$. Therefore, that S_{1} is a minimum certified dominating set of $C_{3} \times C_{n}$ and hence, $\gamma_{c e r}\left(C_{3} \times C_{n}\right)=\left|S_{1}\right|=\left\lceil\frac{3 n}{4}\right\rceil$.

Results 3.7:

(i) For $\mathrm{n} \geq 2, \gamma_{\text {cer }}\left(C_{4} \times C_{n}\right)=n$.
(ii) For $\mathrm{n} \geq 5, \gamma_{c e r}\left(C_{3} \times C_{n}\right)=\left\{\begin{array}{lr}n & \text { if } n \equiv 0(\bmod 5) \\ n+2 & \text { if } n \equiv 3(\bmod 5) \\ n+1 & \text { Otherwise }\end{array}\right.$

References:

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, (1990).
[2] S. Durai Raj, S.G. ShijiKumari and A.M. Anto, On the Certified Domination Number of Graphs, Journal of Information and Computationl Science 10, 331 \{339 (2020).
[3] M. Dettlaft, M. Lemansko, J. Topp, R.Ziemann and P. Zylinski, Certified Domination, AKCE International Journal of Graphs and Combinactorics (Article in press), (2018).
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater Fundamentals of Domination in Graphs, Marcel Dekker,Inc., New York, (1998).
[5] PolanaPalvic, JanezZerovnik, A note on the Domination Number of the Cartesian Product of Paths and Cycles, Krangujevac Journal of Mathematics 37(2), P141 (2011).
[6] Sergio CanoyJr, CarmelitoE.Go, Domination in the Corona and Join of Graphs, International Mathematical Forum 6(13), (2011).
[7] D.B. West, Introduction to Graph Theory, Second Ed., Prentice-Hall, Upper Saddle River, NJ,(2001).

