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Abstract 

This paper deals with the spatial estimation to be optimal estimate when the data have a 

normal distribution. Ordinary kriging technique used in this research and lognormal 
kriging after take logarithm of original data. Variogram function uses in this research to 
obtain the best model of covariance function. The objective of this research is to assess the 
resistance of ordinary kriging and lognormal kriging to outliers. The data adopted of this 
paper from hydrogeological hydro chemical study of Mosul Governorate /Iraq. From the 
results, the errors in the estimated value are critical for the log variance. These results 
show that ordinary lognormal kriging is more effect than ordinary kriging technique under 
outlier. 

Keywords: spatial data, ordinary kriging, lognormal, variogram function. 
 

 
1. Introduction 

 

 
The lognormal distribution is a special form of distribution that has only one mode, but is  
more skewed than the negative binomial. (Eldeiry, Garcia, 2010) uses kriging system to 
predict the value by types of interpolation methods. When logarithms of counts follow a 
normal frequency distribution, the original counts must follow a discrete lognormal 
distribution. The logarithmic transformation of counts often provides a useful 
approximate model to normalize data in a negative binomial distribution. We can analyze 
how strength is distributed across nodes in a similar way to the analysis of degree 
distributions. Indeed, analysis of human structural connectivity networks constructed with 
diffusion indicates that both the strength distribution and degree distribution of brain 
networks have a similar form (Hagmann et al., 2007). 

In the biology sciences in particular, the application of the normal logarithm as well as the 
logarithmic distribution have been dealt with in a number of different aspects, in addition 
to its application in the environment, geology, plants and meteorology, see (Crow, et. al,  
1988) It is also applied in astrophysics, see (Parravano, et. al, 2012). A log-normal 
distribution can be defined as the distribution of a random variable. Recently, Laplace 
logarithm distributions have been proposed to model growth rates as stock prices and 
currency exchange rates Also presented is a random vector distribution following the 
logarithm of the normal distribution of order, which is an exponential generalization of the 
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force of a normal distribution, given by (Kitsos and Tavoularis,2009). This is a family of 
dimensional generalized normal distributions. 

Researchers have also provided collection and dissemination of soil information in some 
scientific projects (such as Rossiter et al., 2015). As soil information can be obtained from 
agricultural fields, it is of great interest to benefit from data and explore important 
applications (Pie, et al., 2010; Mao, et al., 2014, Shiliang, et al., 2015;). 

 
 

2. Methods of geostatisics 

2.1 Variogram function 

Let 𝐻(𝑢)and 𝐻(𝑢 + ℎ)be two random variables at two points (𝑢) and (𝑢 + ℎ)separated 

by the vector h  . The variability between these two quantities is characterized by: 

 

2𝛾(𝑢, ℎ) = 𝐸{[𝐻(𝑢) − 𝐻(𝑢 + ℎ)]2} 
 

In all generality, the variogram function 2𝛾(𝑢, ℎ) is a function of both the point (𝑢) and 

the vectorh  . And variogram function is defined as 
 

2𝛾(ℎ) = 
1

 𝑛(ℎ) 
∑𝑛(ℎ)[𝐻(𝑢) − 𝐻(𝑢 + ℎ)]2 (1) 

2.2 Ordinary kriging. The estimator is: 

 𝐻̂𝜃𝑘 
(𝑢𝑜) = ∑ 𝜔𝑖𝐻(𝑢𝑖), 𝑖 )2( 

where 𝜔𝑖 = 𝜆𝑜𝑘𝑖. 
Kriging weights 𝜔 are obtained by solving the system: 

 ∑ 𝜔𝑖𝛾(𝑢𝑖, 𝑣𝑗) + 𝑟 = 𝛾(𝑣𝑗, 𝑢𝑜), 𝑗 = 1, … , 𝑛 𝑖 ∑ 𝜔𝑖 = 1, 𝑖 
 

)3( 

where 𝛾(ℎ) is the variogram of 𝐻(𝑢) and 𝑟 is the Lagrange multiplier. The symbol 𝜇 is reserved for the mean of the logs. If stationarity can be assumed, then the 

spatial covariance 𝑐(ℎ) also exists and is related to the variogram by: 𝛾(ℎ) = 𝑐(0) − 𝑐(ℎ). 

The kriging system can be rewritten as: 
 ∑ 𝜔𝑖𝑐(𝑢𝑖, 𝑣𝑗) + 𝑟 = 𝑐(𝑢𝑖, 𝑢𝑜), 𝑗 = 1, … , 𝑛 𝑖 ∑ 𝜔𝑖 = 1, 𝑖 

2.3 Ordinary lognormal kriging. Assume that 𝐻(𝑢) has a two-parameter lognormal 
distribution. The three-parameter lognormal is a simple extension of the two- 
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𝜎    

𝑜𝐿𝑘 

𝑜𝐿𝑘 

parameter case. So 𝐹(𝑢) = 𝑙𝑛𝐻(𝑢)~𝖭(𝜇, 𝜎2). The mean, variance, and spatial 
covariance function of 𝐻(𝑢), which is denoted by 𝑀, Σ, and 𝑐(ℎ) respectively, are 

related to the mean, variance, and covariance of 𝐹(𝑢) as follows: 
 

 

1- mean: 𝐸[𝐻(𝑢)] = m = log ( 
−𝜎2

) 
2 

 

2- variance: 𝑣𝑎𝑟[𝐻(𝑢)] = log (1 + 
−𝜎2

) = 𝐶(0) 𝑚2 

 

 

3- covariance: 𝐶𝑜𝑣(ℎ) = log (1 + 
−𝜎2

) 𝑚2 

 

4- variogram 𝛾(ℎ) = 𝐶(0) − 𝐶(ℎ) 
 

(4)𝐻̂𝑜𝐿𝑘 

 
 
 
 
 
 

 
2 

(𝑢𝑜) = exp [ 𝐹(𝑢) + 𝑜𝐿𝑘 + 𝑟] 
 

 
 

 

Where 𝐶(ℎ) denotes the covariance of 𝐹(𝑢). 

The skewness of the distribution can be gauged by calculating the coefficient of 

variation 𝜂 for 𝐻(𝑢), 
 
 𝜂2 = 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
= exp(𝜎2) − 1. 𝑚𝑒𝑎𝑛2 

)1( 

The ordinary lognormal kriging estimator 𝐻̂𝑜𝐿𝑘 
(𝑢𝑜) is given by: 

 𝜎 2 𝑘 𝐻̂ (𝑢  ) = exp  [∑ 𝜔 𝐹  + 𝑜𝐿   + 𝑟] 𝑜𝐿𝑘 𝑜 𝑖   𝑖 2 𝑖 
 

)2( 

where 𝜔𝑖 = ∑𝑖 𝜆𝑜𝐿𝑘𝑖. 
Weighting factors 𝜔𝑖 , Lagrange multiplier 𝑟 and kriging variance 𝜎2 are obtained by 
solving the following system: 

 ∑ 𝜔𝑖𝑃(𝑢𝑖, 𝑣𝑗) + 𝑟 = 𝑃(𝑣𝑗, 𝑢𝑜), 𝑗 = 1, … , 𝑛 𝑖 ∑ 𝜔𝑖 = 1, 𝑖 
 

)3( 

Clearly, the values of 𝜎2    and 𝑟 in this system depended linearly on the value of the 

sill of the variogram of the logs (𝑃(0) = 𝜎2) but the weights 𝜔𝑖 do not. 

The outlier effect index. In this research, the effect of a single outlier in a group of 

otherwise similar values. This being the simplest case, is quantified. Using the 
terminology proposed by Barnett & Lewis (1978) this large value would be considered as 
"discordant" (i.e., an "outlier") if the underlying population is assumed to be normal, 
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whereas it would not if the population is skew (lognormal or otherwise). In that case it 
would merely be part of the " long tail",J. 

All of the sample value except one are assumed to be equal. For case where the mean 
is know (i.e., ordinary kriging), let 𝐻1 = 𝛼𝐻 (where 𝐻𝑗 = 𝐻 𝑓𝑜𝑟 𝑗 ≠ 1). When the 

mean is know, the first value 𝐻𝑖 is equal to 𝛼1𝜇 (or 𝛼1𝑀 for the lognormal case) 

whereas the rest of the values are 𝛼2𝜇 (or 𝛼2𝑀). In both cases, the variogram model is 
assumed to be know. The method used here follows and extends the technique 
proposed by Bou fassa (1986). 

2.4 Ordinary kriging. When these values for 𝐻𝑖 are substituted in Eq. (2) we get: 
 
 𝐻̂𝑜𝑘 

(𝑢𝑜) = H[1 + 𝜔1(𝛼 − 1)], )4( 

and the ratio 𝑟𝑜𝑘 of the effect is: 
 𝐻̂𝑜𝑘 

(𝑢𝑜) 𝑟𝑜𝑘 = 𝐻 
= 1 + 𝜔1(𝛼 − 1) . )5( 

In particular if the values of the outlier 𝐻1 is increased by 10% (i.e., increased 𝛼 𝑡𝑜 1.1𝛼) 

then we get: 
 
 𝑟𝑜𝑘 = 1 + 𝜔1(1.1𝛼 − 1) . )6( 
 

The relation between 𝑟𝑜𝑘 , 𝜔1 and 𝛼 is illustrated in Fig.(1). 

2.5 Ordinary lognormal kriging. Similarly, substituting value for 𝐻𝑖 into Eq.)4( gives: 
 

2 𝐻̂ (𝑢  ) = 𝐻(𝛼𝜔1 )exp  [ 
𝜎   𝑜𝐿𝑘  + 𝑟] 𝑜𝐿𝑘 𝑜 2 

)7( 𝑟 = (𝛼𝜔 ) exp [ 
𝜎 2 

+ 𝑟] = 𝐷(𝛼 ) , 𝑜𝐿𝑘 
1 𝑜𝐿𝑘 𝜔1 

2 

)8( 

where D = exp [ 
𝜎 2     

+ 𝑟] is the bias correctio factor. In graphical terms, it is the ratio of 
2 

the model of the lognormal distribution to its mean value. 10% increase in 𝐻𝑖 would then 
give: 

 𝑟𝑜𝐿𝑘 = 𝐷(1.1𝛼)𝜔1 , )9( 

that is, the effect would be attenuated if 𝜔1 is less than 1, which is usually the case. 𝑔𝑡 

would be magnified in the unlikely case where the kriging weight is greater than 1.(This  
sometimes occurs with " double points" or when using a Gaussian variogram with no 

nugget effect). The relation between 𝑟𝑜𝐿𝑘 , 𝜔1 and 𝛼 is illustrated 
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2.6 Evaluation of kriging methods 

To evaluate the performance of prediction method, we computed the mean error(ME), root 
mean square error(RMSE), and the coefficient of determination (R2) 

 𝑀𝐸 = 
1 ∑𝑛   |𝐻(𝑢 ) − 𝐻̂(𝑢 )| 

 

(14) 𝑛 𝑖=1 𝑖 𝑖 
 

 𝑅𝑀𝑆𝐸 = √1 ∑𝑛   [𝐻(𝑢 ) − 𝐻̂(𝑢 )]2 
 

(15) 𝑛 𝑖=1 𝑖 𝑖 
 

R2 = 1 − 
∑𝑛
 |𝐻(𝑢𝑖)−𝐻̂(𝑢𝑖)|2 (16) ∑𝑛     [𝐻(𝑢𝑖)− ̅𝐻̅̅(̅𝑢̅̅̅𝑖̅)]̅  2 𝑖=1 

 

Where   𝐻(𝑢𝑖)  is the measured value of H at location  𝑢𝑖, 𝐻̂(𝑢𝑖) is the predicted value of 

location, and ̅𝐻̅̅(̅𝑢̅̅̅̅) is the mean of the measured value. 

3. Results and Analysis 

3.1 Data study 

Due to the importance of sulfur in the soil, sulfur is a non-metallic chemical element that 
belongs to the oxygen group and is one of the most reactive chemical elements. Sulfur has 
some toxic effects at times. In addition, it may cause eye irritation, skin toxicity, and 
suffer from some problems and risks of inhalation. The data contain (100) samples of real 
values with their locations of sulfur (S). These data are a real spatial data from 
hydrogeological hydro chemical study of Mosul Quadrangle/Iraq, (Hatem, 2007). Table 
(1) below content the data statistic of sulfur (S). 

 
Table (1): data statistic for sulfur (S) 

 

Stat. 

Data 

Min Max Median Mode Std 

sulfur (S) 0.2000 36.5000 6.75000 3.70000 6.1525 
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3.2 Variogram function 

Figure 1: Histogram of S data 

' 

 

We applied the experimental variogram function according equation ( 1 ), to plot the 
curves of variogram function and by using the data for sulfur (S), in all directions 

  0 , 90 , 45 , and135  . Table (2) below shows the results of the experimental 

variogram function in all direction of compass. 
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Figure 1: curves of variogram function in all directions for sulfur (S) 

Figure (1) show the results of variogram function in all directions 

  0 , 90 , 45 , and135  for sulfur (S) between lag h and gamma(h). And the results of 

variogram function in all directions of compass ,where gamma1 for theta 0, gamma2 for 
theta 90, gamma3 for theta 45, and gamma4 for 135. (see Table (2) below), 

Table 2: results of variogram function in all directions for sulfur (S) 
 

gamma1 0.0001 0.0002 0.0004 0.0006 0.0008 0.0012 0.0017 0.0022 0.0026 
 

gamma 2 0.0032 0.0077 0.0126 0.0193 0.0259 0.0260 0.0290 0.0282 0.0324 
 

gamma 3 0.0033 0.0084 0.0144 0.0226 0.0322 0.0336 0.0384 0.0361 0.0431 
 

gamma 4 0.0030 0.0069 0.0107 0.0161 0.0205 0.0205 0.0217 0.0226 0.0266 
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g
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) 
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Figure 2: curves of variogram function (a) in all directions for sulfur (S), (b) average of 
variogram function 

Figure (2) illustrates curves of variogram function (a) in all directions 

  0 , 90 , 45 , and135  for sulfur (S), (b) average of variogram function   0 , 90 
because have the same lag, and   45 ,135  have the same lag. And by statistics of 

average variogram function of   0 , 90  , we show from the curves of average 

variogram function that nugget effect = 0.0017, sill= 0.0176, and range=8 on x-axis, while 

the curve of average variogram function of   45 ,135  illustrate nugget effect =0.0033, 

sill= 0.0336, and range is (11.31) on x-axis. (see Table (3) below) 

Table 3: results of average variogram function 
 

gamma5 0.0017 0.0040 0.0064 0.0101 0.0133 0.0137 0.0153 0.0151 0.0176 

gamma6 0.0033 0.0078 0.0125 0.0197 0.0264 0.0271 0.0297 0.0285 0.0336 
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Figure 3 : curves of variogram function in all directions for log (S) 

Figure(3) shows curves of variogram function in all directions   0 , 90 , 45 , and135 
for sulfur (S), 

 
Table 4: results of variogram function in all directions for log (S) 

 
 

gamma1 

1.0e-005 * 

 

0.0392 
 

0.0864 
 

0.1534 
 

0.2478 
 

0.3578 
 

0.5096 
 

0.6743 
 

0.8661 
 

0.9509 

gamma 2 

1.0e-003 * 

0.0128 0.0346 0.0548 0.0854 0.1241 0.1365 0.1567 0.1707 0.2089 

gamma 3 

1.0e-003 * 

0.0137 0.0391 0.0636 0.1017 0.1548 0.1781 0.2175 0.2448 0.3107 

gamma 4 

1.0e-003 * 

 

0.0115 
 

0.0295 
 

0.0444 
 

0.0695 
 

0.0972 
 

0.1038 
 

0.1160 
 

0.1286 
 

0.1604 

 

 
Table (4) illustrate the results of variogram function in all directions for log(S), Where 
gamma1 (theta 0), gamma2 (theta 90), gamma3 ( theta 45), and gamma4 (theta 135) 
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Figure 4 : curves of variogram function (a) in all directions for log (S), (b) average of 
variogram function 

Figure(4) shows curves of variogram function, (a) in all directions for log (S), (b) average 

of variogram function   0 , 90  because have the same lag, and   45 ,135  have 

the same lag. And by statistics of average variogram function of   0 , 90  , we show 

nugget effect = (0.0073) *1.0e-003, sill= (0.1073) *1.0e-003 , and range=8 on x-axis, 

while the curve of average variogram function of   45 ,135  illustrate nugget effect is 

(0.0143) *1.0e-003, sill= (0.2093) *1.0e-003, and range is (11.31) on x-axis. 

Table 5: results of average variogram function for log (S) 
 

gamma5 

1.0e-003 * 

0.0073 0.0181 0.0274 0.0446 0.0626 0.0694 0.0795 0.0864 0.1073 

gamma6 
1.0e-003 * 

0.0143 0.0361 0.0541 0.0884 0.1245 0.1381 0.1568 0.1671 0.2093 

 

It was noted that curves in all directions are nearest to the gaussian model that is defined 
as: 

 𝛾(ℎ) = (co  c [1 − exp (
−|ℎ|2

)])   , ℎ ≠ 0 (17) 𝑎2 
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Where h  aand a: is the range, co is Nugget effect and co  c is the variance, it was 

noted   that   the   curve   of   variogram   function   for   data,   cut   the   vertical   axis   at 

co    0.0073*1.0e  003 ,  and  the  range  a  11.31 when  the  curve  of  variogram  is 

stable, and the variance co c  0.2093*1.0e  003. 

 
3.3 Prediction of kriging technique 

 

Kriging technique used to predict unmeasured location for the regionalized variable. This 
prediction used for five random locations by applying equation (6) to obtain the weights 
for each variable. The results of weights were obtained where the nearest data has the 
bigger weights while, the furthest data has the smallest weights and is near to one that is 
the unbiased condition. The variance of kriging is compute in these locations to get the 
accuracy of prediction process. The observed points are display as a reference for the 
kriging models. The kriging model preformed as a trend surface. Most of the values of 
kriging variance are very small and also ME, RMSE and R2 (see Table 6). This proves 
the accuracy of the kriging technique supplies a good prediction, which proves the 
effectiveness of prediction process. we need to understand how outlier work, that the 
kriging process has two steps: first step, build a semivariogram to model the spatial 
relationships between points, to find the correlation between data points based on their 
distance. And the second step is to use the semivariogram and a dataset to make 
predictions at new location. We use the whole data(outliers included) in the prediction, 
because the modeling is not corrupted by the outliers, but the prediction surface still 
accounts for the extreme values, for example outlier (0.0336) for gamma of sulfur data 
(S), while (0.2093) multiply *1.0e-003  for gamma of log (S). 

 

Table 6: results of cross validation 
 

ME 0.0345 0.0111 0.0244 0.0431 0.0126 0.0324 0.055 0.0554 0.103 

RSME 0.73 0.67 0.545 0.887 0.645 0.741 0.678 0.857 0.963 

R2 0.932 0.884 0.794 0.887 0.964 0.890 0.797 0.869 0.978 

 
 

4. Conclusion 
 

Through our findings, we notice that the two-dimensional variogram function is very 
similar to the Gaussian mathematical model, and this is shown by the congruence of the 
theoretical and practical studies. Robust estimators can overcome the bias caused by 
outliers. This supports that the values of the normal kriging variance are very small and 
with negligible differences, as well as the variance of the kriging estimator is small 
which indicates the error is very small and that the weights are close to the same for one 
as the function diagram after prediction increases as the displacement h increases to a 
certain extent and then stabilizes, which indicates the compatibility of the mathematical 
model with the data of the applied example. The curve of origin data of sulfur is nearest 
of the curve after took logarithm of data and near than Gaussian model with their 
properties. 
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