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Abstract: Brain activity is analyzed with the help of EEG signals. It has small amplitude, 

thus it is influenced by the various artefacts. It is highly needed that the artefacts should 

get eliminated from the EEG signals by efficacious processing. This paper explores the 

technicality of deep learning in order to remove the artefacts. For which Pre-processing 

and feature extraction is to be carried out initially for the EEG signals. Here the wavelet 

transform is applied to extract the wavelet features, which are scattered to the projected 

classifier which is called killer whale fractional calculus optimization (KWFCO). The 

technique is carried out with experimentation for removing artefacts like EMG, EOG, 

ECG and random noise on the EEG signal. The proposed technique's simulation results 

have been presented, and they have been found to perform well with improvement in MSE 

and SNR. 

 

Introduction: Humans neurological disorders can be analyzed by using EEG signals. For 

this purpose, high quality EEG signals are required. It is an important task to sweep out all 

the artefacts present in EEG signals to enhance the quality which is suitable for any 

application. EEG signals are extensively used in the fields of Medical diagnosis such as 

Anesthetic level, Epilepsy, Brain injury, Tumor location, Alertness monitor, monitoring 

during surgery, efficacy of yoga etc [1] , Brain-computer interface (BCI) research and 

Neuro marketing. 

 
Figure1.Different types of artefacts present in EEG signal 
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In the long drawn out process, EEG signals are impacted by non-physiological and 

physiological artefacts [2]. Artefacts of EEG signals are shown in the figure1. EEG plays a  

vital role in diagnosing sleep disorders. The combination of support vector machine and 

principal component analysis is used to identify the sleep stages classification [3]. 

Singular spectrum analyzer is used to remove EOG artefacts from EEG signal, but its 

disadvantage is that it requires EOG signal as reference signal. The accuracy of this 

method depends upon the quality of reference signal. Adaptive Noise Canceller (ANC) 

and Singular Spectrum Analysis (SSA) are used to analyze brain activities from EEG. In 

this method ANC plays an important role to remove artefacts present in the EEG signal 

[4]. 

In multi-channel EEG, various artefacts are removed efficiently by the combination of 

WICA and SVM. In this method SVM is trained by features like Variance, range of 

amplitude, Shannon’s entropy and kurtosis [5]. ANC with Nature inspired techniques are 

more powerful, accurate and its output preserves the good shape as input signals. 

Depending on the application, a particular algorithm is selected [6]. Motion   artefacts 

from EEG signals are removed by using multi resolution schemes. In this method the EEG 

signals are transmitted through the discrete wavelet transform, total variation and filter  

respectively for sub banding, approximation and artefact removal from sub bands [7]. 

Empirical Mode Decomposition (EMD), wavelet transform based methods and regressive 

models are frequently used for single channel EEG signals denoising, whereas Blind 

source separation methods are used for multichannel [8]. 

Firefly and Levenberg Marquardt algorithm are integrated to Optimize the weights of 

adaptive filter is effectively eliminate the artefacts from EEG signals [9].EEG signal with 

artefacts are classified as artefacts by independent component analysis (ICA), then the 

artefacts are eliminated by linear discriminant analysis (LDA)[10]. Least mean squares 

(LMS) based cascade adaptive filters eliminate EOG spikes, ECG artefacts and line 

interference using FIR filters by adjusting their coefficients similar to EEG artefacts[11]. 

The remaining portion of the paper is structured as follows: Section 1 stipulates EEG 

introduction and literature survey. Section 2 represents the Killer whale Fractional 

calculus optimization algorithm for the removal of artefacts using deep-ConvLSTM 

network. Deep conv-LSTM structure is described in Section 3. Section 4 presents Killer 

whale Fractional Calculus Optimization (KWFCO) Algorithm description Section 5 

implies results. Section6 provides conclusion remarks. 

II. Killer whale Fractional calculus optimization algorithm for the removal of 

artefacts using deep-ConvLSTM network: 

This part illustrates the specific exploitation of the projected framework in order to 

eliminate the artefacts from EEG signals. The diagram of the scheme related to removal of 

artefact proposed is depicted in figure2. It can be understood through the figure that the 

feature extraction is made susceptible through the pre-processed signals of EEG. Since the 

signals consist of sensitive information the wavelet features of the signals are obtained by 

applying the wavelet transform to the EEG signals. The training is maintained through 
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deep learning with productivity received by projected algorithm, as a novas development 

out of joining FC and Killer whale algorithm. 

Pre-Processing: The purpose of removing unwanted noise like power line noise of EEG 

signal is accomplished by pre-processing. When the EEG signals occupy the projected 

system which makes use of the notch filter, it is used to sweep out the 50/60 Hz 

frequencies from EEG signals. 

Feature Extraction: In continuation to pre-processing feature extraction are subjected by 

EEG signals. For any application it is quite important to get the accurate information from 

the contaminated EEG signals. This process observes apt-able data from EEG signals 

through executing the needy transition and produces the extracted feature for training. The 

wavelet features 

Figure2. Flow chart of killer whale Fractional calculus optimization algorithm for the 

removal of artefacts using deep-ConvLSTM network 

Portrait EEG signal for removal of artefact and therefore this deed gains the valued 

features from EEG signals, for which the haar wavelet transform, the simplest possible is  

applied to the signal. 
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III. Deep conv-LSTM network construction for removing of artefacts from EEG 

signals: 

This part explores the design of the projected deep conv-LSTM network which is 

shown in figure3. Features of EEG signals have been fed to the network training, as 

explored in the architecture [15]. The projected deep conv-LSTM has the layered 

interrelation, which is built as a stack. The outcomes from each network are concatenated 

as well as supplemented to the 1X1 convolutional network for the last prediction. The 

encoding structure represents the initial network and forecasting network represents the 

other. The output of the final prediction is interpreted as follows: 
     

St 1 ,…St K   arg max  s St 1,…S t K S t  J 1 ,…̂  S t 
S t  1  ,…S t   K  




    arg max s St 1,…St  K fencoding S t  J 1,…St 
S t  1  ,…S t   K  

 
  

 
 g forecasting  fencoding S t  J 1,…St 

   (1) 
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Figure3. Deep convolution Long Short Term Memory architecture 
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The conv-LSTM layered network is joined to the network fed forward via the possible 

hidden layer weighted. The input layer has the wavelet features and hidden neurons 

containing the weights as well as the bias B for the outcome computation which is 

represented as Yn(t). 

In the elimination of artefacts from EEG signals Deep-ConvLSTM network weights 

play a significant role. In this proposed method Deep-ConvLSTM weights are generated 

through Killer whale Fractional Calculus Optimization (KWEPCFCO) Algorithm. 

 
IV. Killer whale Fractional Calculus Optimization (KWFCO) Algorithm description: 

The proposed KWFCO is implemented incorporating the properties of the FC into the 

KWO approach. The KWO algorithm is used for solution updation, Whereas the FC 

technique attempts to incorporate past solutions by including the second order derivative. 

As a result, the suggested KWFCO algorithm approaches the best solution more quickly 

than the existing KWO method. The computational steps in the proposed KWFCO 

algorithm for determining optimal weights are outlined below. 

Step 1: Initialize the population: The algorithm begins with Population initialisation, 

which is nothing but the Whale population. Let the solution space contains N number of 

solutions represented as: 

X  X , X 2..., Xi , .... X ;1  i  N (2) 

Where X the ith solution and N is the population size. 

Step 2: Evaluation of fitness: The fitness evaluation is the next step. The optimisation 

approach here is to determine the suitable weight for the Deep ConvLSTM network, in  

such a way that the error is minimum in the fitness function. Fitness of all the N solutions 

are evaluated in this step by using the equation: 

1 N 
E 

N n 1 

Dn  Y n  (3) 

Where Dn indicates the desired response and Y n refers to the output of the Deep 

ConvLSTM network. 

Step 3: KWFCO algorithm position update: This algorithm is inspired by the social 

behaviour of Killer Whale. Matriline is the group of killer whale which consists of 

members and leader. The duty of the leader is to search the prey position and maximum 

velocity and minimum distance to catch the prey [12]. The global optimum is determined 

by comparing the outcomes of each member's actions. In this method, if the member’s 
objective function value is greater than the leader, then the leader must discover another 

new potential prey [13]. 

In the chasing mode the whale moves from current location to prey location with some 

velocity, so the position and velocity updates are formulated as: 

V t  1  V t   c X t   X t  c X t   X t  c .X t  (4) 
ij ij 1 best, j i, j 2 global, j i, j 3 leader, j 

X i ,  j t  1  X 
 

i, j t   V t  1 (5) 
i, j 

N 


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N 

Where, Vij t 1 is the velocity updation of whale(i) in j
th

 dimension, Xbest, j 
is the 

whales(i) best Position in jth dimension, X i ,  j 
is whales(i) Position in jth dimension, 

X global, j   Global best Position, Xleader, j 
is the leader whale position in jth dimension, 

c1 , c2 , c3 are the constants. If the global best cost function is less than the leader whale 

cost function then the leader whale will shift to another cluster therefore c3 =0, If global 

best cost function is greater than the leader whale cost function then c2 =0 [13]. 

In the position update, substitute the above expression (4) 

X t  1  X t  V t  c X t   X t  c X t  X t  c .X t 
i, j 

(6) 

i, j ij 1 best, j i, j 2 global, j i, j 3 leader, j 

Rearranging the preceding equation, 

X t  1 X t   V t  c X t  X t  c X t   X t  c .X t  (7) 
i, j i, j ij 1 best, j i, j 2 global, j i, j 3 leader, j 

To include previous solutions in the position update, the fractional calculus is used [14]. 

Using fractional calculus to solve the preceding expression 

D X t 1 X t V t c X t X t c X t X t c .X t
i, j i, j ij 1 best, j i, j 2 global, j i, j 3 leader, j 

(8) 

X i ,  j t 1X i, j 
t 

1 
.X 

2 i, j 
t 1 

1 
.1 .X 

6 i, j 
t  2 1 

.1 .2  .X 
24 i, j t  3(9) 

 V t  c X (t)  X (t) c X (t)  X (t) c .X (t) 
ij 1 best, j i, j 2 global, j i, j 3 leader , j 

The KW algorithm's final phrase for position update is as follows 

X i , j t 1  X i, j 
t  

1 
.X 

2 i, j 
t 1 

1 
.1 .X 

6 i, j 
t  2 1 

.1 .2  .X 
24 i, j t  3(10) 

V t  c X (t)  X (t) c X (t)  X (t)  c .X (t) 
ij 1 best, j i, j 2 global, j i, j 3 leader , j 

Step 4: Best solution finding: By using position update equation of KWFCO algorithm, 

find the best solution X global, j t ,which is minimum fitness value. 

Step 5: Finally, the algorithm terminates, when the number of iterations is complete and 

the optimal solution is nothing but the optimal weight of the Deep-ConvLSTM network. 

 
V. Results and Discussion 

Evaluation metrics: 

MSE: The MSE metric defines the deviation in actual response to desired response 
and it is expressed as, 

N
 

MSE  
 1 Dn  Y n 2 

N n 1 

SNR: The SNR measure is calculated as follows, 

 

(11) 

Dn 2 

SNR  n1  

 
(12) 

 

 


n1 

Dn  Y 
n 2 

N 
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ECG artefact analysis: 
 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure4. EEG with ECG artefact analysis based on (a) MSE (b) SNR 

 

Figure4 prostates the analysis of EEG signal in comparison with deep conv-LSTM based 

on projected KWFCO with the retaining schemes which all are influenced by ECG 

artefacts. The ECG signals are evaluated through MSE and SNR metrics for the five input 

signals of EEG. Figure4a explores the comparative analysis of the projected deep conv- 

LSTM with KWFCO algorithm in order to remove the ECG artefact on the basis of MSE 

metric. When the EEG signals which are contaminated with the ECG artefact are 

accomplished as input the models like NN-LM, ICA and Adaptive RLS filter gain the 

MSE values of 5727, 6684, 5718 respectively. Consequently the projected deep conv- 

LSTM with KWFCO algorithm performs better with lesser value of MSE that is 

3894.Figure 4b describes the same proposal with algorithm to remove ECG artefact where 

the basis is SNR metric. When the EEG signals which are contaminated with the ECG 

artefact retaining NN-LM, ICA and Adaptive RLS filter models gained the SNR values of 

27.62dB, 68dB, 35.87dB respectively. The same combination of deep conv-LSTM and 

KWFCO algorithm dominated other models with higher values of SNR that is 70.87 db 

.EMG artefact analysis: 
 
 

(a) (b) 

 
Figure5. EEG with EMG artefact analysis based on (a) MSE (b) SNR 



Turkish Journal of Computer and Mathematics Education Vol.11 No.03 (2020), 1238- 1248 

Research Article 

1245 

 

 

 

Figure5 prostrates the analysis of EEG signal in comparison with deep conv-LSTM based on 

projected KWFCO with the retaining schemes which all are influenced by EMG artefacts. 

The EMG signals are evaluated through MSE and SNR metrics for the five input signals of 

EEG. Figure5a explores the comparative analysis of the projected deep conv-LSTM with 

KWFCO algorithm in order to remove the EMG artefact on the basis of MSE metric. When 

the EEG signals which are contaminated with the EMG artefact are accomplished as input the 

models like NN-LM, ICA and Adaptive RLS filter gain the MSE values of 7406, 7475, 7427 

respectively. Consequently the projected deep conv-LSTM with KWFCO algorithm performs 

better with lesser value of MSE that is 5079.Figure 5b describes the same proposal with 

algorithm to remove ECG artefact where the basis is SNR metric. When the EEG signals 

which are contaminated with the ECG artefact retaining NN-LM, ICA and Adaptive RLS 

filter models gained the SNR values of 31.31dB, 68dB, 32.43dB respectively. The same 

combination of deep conv-LSTM and KWFCO algorithm dominated other models with 

higher values of SNR that is 70.58db 

EOG artefact analysis: 
 
 

(a) (b) 

 
Figure6. EEG with EOG artefact analysis based on (a) MSE (b) SNR 

Figure6 prostrates the analysis of EEG signal in comparison with deep conv-LSTM based 

on projected KWFCO with the retaining schemes which all are influenced by EOG 

artefacts. The EOG signals are evaluated through MSE and SNR metrics for the five input 

signals of EEG. Figure6a explores the comparative analysis of the projected deep conv- 

LSTM with KWFCO algorithm in order to remove the EOG artefact on the basis of MSE 

metric. When the EEG signals which are contaminated with the EOG artefact are 

accomplished as input the models like NN-LM, ICA and Adaptive RLS filter gain the 

MSE values of 9364, 7578, 9388 respectively. Consequently the projected deep conv- 

LSTM with KWFCO algorithm performs better with lesser value of MSE that is 

6381.Figure 6b describes the same proposal with algorithm to remove EOG artefact where 

the basis is SNR metric. When the EEG signals which are contaminated with the EOG 

artefact retaining NN-LM, ICA and Adaptive RLS filter models gained the SNR values of 

30.28dB, 65.96dB, 41.88dB respectively. The same combination of deep conv-LSTM 
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and KWFCO algorithm dominated other models with higher values of SNR that is 

70.88db 

 
Random noise analysis: 

 
 

(a) (b) 

Figure7. EEG with random noise analysis based on (a) MSE (b) SNR 

 
Figure7 prostrates the analysis of EEG signal in comparison with deep conv-LSTM based 

on projected KWFCO with the retaining schemes which all are influenced by random 

noise artefacts. The random noise signals evaluated through MSE and SNR metrics for the 

five input signals of EEG. Figure7a explores the comparative analysis of the projected 

deep conv-LSTM with KWFCO algorithm in order to remove the random noise artefact on 

the basis of MSE metric. When the EEG signals which are contaminated with the random 

noise artefact are accomplished as input the models like NN-LM, ICA and Adaptive RLS 

filter gain the MSE values of 17286, 18445, 17315respectively. Consequently the 

projected deep conv-LSTM with KWFCO algorithm performs better with lesser value of 

MSE that is 11815.Figure 7b describes the same proposal with algorithm to remove 

random noise artefact where the basis is SNR metric. When the EEG signals which are 

contaminated with the random noise artefact retaining NN-LM, ICA and Adaptive RLS 

filter models gained the SNR values of 32.43dB, 68dB, 46.34dB respectively. The same 

combination of deep conv-LSTM and KWFCO algorithm dominated other models with 

higher values of SNR that is 70.95d 

 
VI. Conclusion remarks: EEG signals having little amplitude and influenced by artefacts 

are used to analyze brain activity. The detection process is affected by the artefacts present 

in the EEG signal, which makes it relevant to eradicate the artefacts from EEG signals.  

This experiment has initialized the framework for the removal of artefacts. Here the 

modification of conv-LSTM network through the development of deep conv-LSTM is 

accomplished where the capacities for the projected network are selected from the 

KWFCO algorithm proposed. In this deed the algorithm is improved by modifying KW  

with fractional calculus. Firstly, different channels produce EEG signals which are 
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processed beforehand and related to the extraction of features. EEG signals yielded 

wavelet features, which were then fed into the proposed deep conv-LSTM network, which 

removed artefacts from the signal while producing the original EEG signal.. For this 

experiment four distinctive artefacts i.e. EOG, ECG, EMG and random noise are promoted 

in EEG signals. The results of this scheme are contrasted with that of retained techniques 

as well as calculated with metrics of MSE and SNR. From simulation outcomes it is 

interpreted that the proposed deep conv-LSTM with KWFCO algorithm has achieved the 

values i.e. 3891 and 70.98dB for MSE and SNR respectively. 
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