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_____________________________________________________________________________________________________ 

 

Abstract: If  P(z) = ∑ cjzjnj=0   is a polynomial of degree 𝑛 not vanishing in  |𝑧| < 𝐾, 𝐾 ≤ 1 , 

then Govil [ Proc. Natl. Acad. Sci., 50(1980), pp.50-52] proved  

                                           max|𝑧|=1|𝑃 ′(𝑧)| ≤ 𝑛1+𝐾𝑛 max|𝑧|=1|𝑃(𝑧)|    
provided |𝑃 ′(𝑧)| and  |𝑄′(𝑧)| attain their maximum at the same point on   |𝑧| = 1,  where  𝑄(𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅

 . In this paper  an improvement of above inequality is obtained and an 

extension to the 𝑠𝑡ℎ derivative for polynomials of degree   𝑛 ≥ 2 is proved. 
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1. Introduction  

Let P(z) be a polynomial of degree n and P'(z) its derivative. According to a well known result 

due to S. Bernstein [1], we have 
 

 

 
max|𝑧|=1|𝑃 ′(𝑧)| ≤ 𝑛 max|𝑧|=1|𝑃(𝑧)|.    (1.1) 

 

The result is best possible and equality holds for (𝑧) = 𝛼𝑧𝑛  , where |𝛼| = 1. 

 

If we restrict to the class of polynomials having no zero in |𝑧| < 1, then the bound in inequality 

(1.1) can be improved. In this direction,  P. Erdӧs [2] conjectured and later Lax [6] verified that 

if 𝑝(𝑧) ≠ 0 in |𝑧| < 1, then 

 
 max|𝑧|=1|𝑃 ′(𝑧)| ≤ 𝑛2 max|𝑧|=1|𝑃(𝑧)|.    (1.2) 

 

The above result is best possible and equality holds for 𝑃(𝑧) = 𝛼+𝛽𝑧𝑛, where |𝛼| = |𝛽|. 
 

While seeking for generalization of inequality (1.2), Malik [7] considered the polynomial 𝑝(𝑧) ≠ 0 in |𝑧| < 𝐾, 𝐾 ≥ 1, and proved 

 
 

 max|𝑧|=1|𝑃 ′(𝑧)| ≤ 𝑛1 + 𝐾 max|𝑧|=1|𝑃(𝑧)|.    (1.3) 
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The above result is best possible and equality holds for the polynomial  𝑃(𝑧) = (𝑧 + 𝐾)𝑛. 
 

For polynomials not vanishing in |𝑧| < 𝐾, 𝐾 ≤ 1, Govil [4] proved the following result 
analogous to (1.3). 

 

Theorem A Let  𝑃(𝑧) = ∑ 𝑐𝑗𝑧𝑗𝑛𝑗=1   is a polynomial of degree n , having no zero in  |𝑧| < 𝐾,𝐾 ≤ 1 and 𝑄(𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
 . If  |𝑃 ′(𝑧)|  and |𝑄′(𝑧)| become maximum at the same point on |𝑧| = 1, then 

 
 max|𝑧|=1|𝑃 ′(𝑧)| ≤ 𝑛1 + 𝐾𝑛 max|𝑧|=1|𝑃(𝑧)|.    (1.4) 

 

 

2. Main Results 
 

In this paper, we first obtain an improvement of the bound in Theorem A  by involving some  

coefficients  of  P(z). 
 

Theorem 1. Let 𝑃(𝑧) = ∑ 𝑐𝑗𝑧𝑗𝑛𝑗=1  be a polynomial of degree 𝑛 ≥ 2, having no zero in |𝑧| < 𝐾, 𝐾 ≤ 1 and let 𝑄(𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
 . If  |𝑃 ′(𝑧)| and  |𝑄′(𝑧)| attain the maximum at the 

same point on |𝑧| = 1 , then 

 
 max|𝑧|=1|𝑃 ′(𝑧)| ≤ 𝑛1 + 𝐾𝑛 max|𝑧|=1|𝑃(𝑧)|  − {1 − 𝐾41 + 𝐾𝑛} |𝑐𝑛−1|     𝑓𝑜𝑟  𝑛 > 2, (2.5) 

 

 

 
and 

  max|𝑧|=1|𝑃 ′(𝑧)| ≤ 21 + 𝐾2 max|𝑧|=1|𝑃(𝑧)|   − {1 − 𝐾21 + 𝐾2} |𝑐1|     𝑓𝑜𝑟  𝑛 = 2. (2.6) 

 

 

 

 

It is clearly of interest to obtain a generalization of Theorem 1 for the 𝑠𝑡ℎ derivative of P(z). In 
this direction, we prove 

Theorem 2. Let 𝑃(𝑧) = ∑ 𝑐𝑗𝑧𝑗𝑛𝑗=1  be a polynomial of degree  𝑛 ≥ 2, having no zero in |𝑧| < 𝐾, 𝐾 ≤ 1 and let 𝑄(𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
. If  |𝑃(𝑠)(𝑧)| and |𝑄(𝑠)(𝑧)| attain the maximum at 

the same point on |𝑧| = 1, then 

 
 max|𝑧=1||𝑃(𝑠)(𝑧)| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1)1 + 𝐾𝑛 max|𝑧=1||𝑃(𝑧)|   − {1 − 𝐾41 + 𝐾𝑛} |𝑐𝑛−𝑠|     𝑓𝑜𝑟  𝑛 − 𝑠 > 2, 

(2.7) 

 

and 
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 max|𝑧=1||𝑃(𝑠)(𝑧)| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1)1 + 𝐾𝑛 max|𝑧=1||𝑃(𝑧)|   − {1 − 𝐾21 + 𝐾2} |𝑐𝑛−𝑠|     𝑓𝑜𝑟  𝑛 − 𝑠 = 1. 
(2.8) 

 

 

Remark 1. Theorem 2 reduces to Theorem 1 if we take s=1 in Theorem 2. 
  

3. Lemmas 
 

For the proof  of the theorems, we need the following lemmas. 

 

Lemma 1. If P(z) is a polynomial of degree  n , then for |𝑧| = 1  
 

 |𝑃(𝑠)(𝑧)| + |𝑄(𝑠)(𝑧)| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1) max|𝑧|=1|𝑃(𝑧)| , (3.1) 

 

where 𝑄(𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
. 

 
The above lemma is due to Govil and Rahman [5]. The next lemma is due to Frappier  et al.[3]. 

 

Lemma 2.  If 𝑃(𝑧) = ∑ 𝑐𝑗𝑧𝑗𝑛𝑗=1   is a polynomial of degree n , then for  R>1 

 

 max|𝑧|=𝑅|𝑃(𝑧)| ≤ 𝑅𝑛 max|𝑧=1||𝑃(𝑧)|  − (𝑅𝑛 − 𝑅𝑛−2)|𝑃(0)|    𝑓𝑜𝑟  𝑛 ≥ 2 ,   (3.2) 

 

and 

 

 max|𝑧|=𝑅|𝑃(𝑧)| ≤ 𝑅 max|𝑧|=1|𝑃(𝑧)|  − (𝑅 − 1)|𝑃(0)|    𝑓𝑜𝑟  𝑛 = 1 .   (3.3) 

 

 

The coefficient of |𝑃(0)| is best possible for each R. 

 

Lemma 3. If 𝑃(𝑧) = ∑ 𝑐𝑗𝑧𝑗𝑛𝑗=1   is a polynomial of degree n having all its zeros in the disk |𝑧| < 𝐾, 𝐾 ≤ 1 , then for  1 ≤ s < 𝑛 
 

 max|𝑧|=1|𝑄(𝑠)(𝑧)| ≤ 𝐾𝑛 max|𝑧|=1|𝑃(𝑠)(𝑧)|   − (𝐾𝑛 − 𝐾𝑛−4)|𝑐𝑠|     𝑓𝑜𝑟  𝑛 − 𝑠 > 2 (3.4) 

 

and 

 
 max|𝑧|=1|𝑄(𝑠)(𝑧)| ≤ 𝐾𝑛 max|𝑧|=1|𝑃(𝑠)(𝑧)|  − (𝐾𝑛 − 𝐾𝑛−2)|𝑐𝑠|     𝑓𝑜𝑟  𝑛 − 𝑠 = 1, (3.5) 

 
 

 

where (𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
 . 

 

Proof of lemma 3. Since all the zeros of the polynomial P(z) lie in |𝑧| < 𝐾, 𝐾 ≤ 1 , therefore 

the polynomial  𝐺(𝑧) = 𝑃(𝐾𝑧) has all its zeros in the disk |𝑧| < 1. Let 𝐻(𝑧) = 𝑧𝑛𝐺(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
, 
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then H(z) = znP(K z̅⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅ =  KnQ(z K⁄ ) has all its zeros in |𝑧| > 1. Therefore,  𝐺(𝑧) 𝐻(𝑧)⁄   is 

analytic in |𝑧| < 1 and |𝐺(𝑧)| = |𝐻(𝑧)| for  |𝑧| = 1. It follows by maximum modulus 

principle that |𝐺(𝑧)| ≤ |𝐻(𝑧)| for |𝑧| < 1. Replacing  z  by 1 𝑧⁄  , we get |𝐻(𝑧)| ≤ |𝐺(𝑧)|  for |𝑧| ≥ 1. For every real or complex number  λ  with |𝜆| > 1 , we get  |𝐻(𝑧)| ≤ |𝜆𝐺(𝑧)|  for |𝑧| ≥ 1. It follows by Rouche's theorem that the polynomial 𝐻(𝑧) − 𝜆𝐺(𝑧) has all its zeros in |𝑧| < 1. Hence by Gauss-Lucas theorem, the polynomial 
 

 𝐻(𝑠)(𝑧) − 𝜆𝐺 (𝑠)(𝑧) (3.6) 

 

has all its (𝑛 − 𝑠)  zeros in |𝑧| < 1, which implies 

 
 |𝐻(𝑠)(𝑧)| ≤ |𝐺(𝑠)(𝑧)|    𝑓𝑜𝑟    |𝑧| ≥ 1. (3.7) 

If inequality (3.7) is not true , then there must be a point 𝑧 = 𝑧0 with |𝑧0| ≥ 1 such that |𝐻(𝑠)(𝑧0)| > |𝐺(𝑠)(𝑧0)|.     
 

We take   

         𝜆 = 𝐻(𝑠)(𝑧0)𝐺(𝑠)(𝑧0)  
so that |𝜆| > 1 and from (3.6) , with this choice of λ , we get 𝐻(𝑠)(𝑧0) − 𝜆𝐺(𝑠)(𝑧0) = 0    for |𝑧0| ≥ 1, which contradicts the fact that all the zeros of the polynomial  𝐻(𝑠)(𝑧) − 𝜆𝐺 (𝑠)(𝑧) lie 

in |𝑧| < 1. Hence for |𝑧| ≥ 1, the inequality (3.7) is true. Substituting 𝐺(𝑧) = 𝑃(𝐾𝑧)  and  𝐻(𝑧) =  𝐾𝑛𝑄(𝑧 𝐾⁄ ) in inequality (3.7), we get 

 𝐾𝑛−𝑠|𝑄(𝑠)(𝑧 𝐾⁄ )| ≤ 𝐾 𝑠|𝑃(𝑠)(𝐾𝑧)|         |𝑧| ≥ 1. (3.8) 

 

Putting  Kz  in place of z in inequality (3.8), we get 

 

 𝐾𝑛−2𝑠|𝑄(𝑠)(𝑧)| ≤ |𝑃(𝑠)(𝐾2𝑧)|         |𝑧| ≥ 1. (3.9) 

 
 

In particular, from inequality (3.9), we have 

 

       𝐾𝑛−2𝑠 max|𝑧|=1|𝑄(𝑠)(𝑧)| ≤ max|𝑧|=𝐾2|𝑃(𝑠)(𝐾2𝑧)|. (3.10) 

 

For the case  𝒏 − 𝒔 ≥ 𝟐. 

Using inequality (3.2) of Lemma 2 to the polynomial 𝑃(𝑠)(𝑧)  of degree  𝒏 − 𝒔 ≥ 𝟐  with = 𝐾2 ≥ 1 , we obtain 

 

 max|𝑧|=𝐾2|𝑃(𝑠)(𝑧)| ≤ (𝐾2)𝑛−𝑠 max|𝑧|=1|𝑃(𝑠)(𝐾2𝑧)|− ((𝐾2)𝑛−𝑠 − (𝐾2)𝑛−𝑠−2)|𝑃(𝑠)(0)|  .   (3.11) 

 
Combing the inequalities (3.10) and (3.11), we get 

 𝐾𝑛−2𝑠 max|𝑧|=1|𝑄(𝑠)| ≤ 𝐾2𝑛−2𝑠 max|𝑧|=1|𝑃(𝑠)| − (𝐾2𝑛−2𝑠 − 𝐾2𝑛−2𝑠−4)|𝑐𝑠|, 
from which follows inequality (3.4). 
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For the case 𝒏 − 𝒔 = 𝟏. 
Inequality (3.10), becomes 

 

       𝐾2−𝑛 max|𝑧|=1|𝑄(𝑠)(𝑧)| ≤ max|𝑧|=𝐾2|𝑃(𝑠)(𝐾2𝑧)|. (3.12) 

 

Using inequality (3.3) of Lemma 2 to the polynomial 𝑃(𝑠)(𝑧) of degree  𝒏 − 𝒔 = 𝟏  for 𝑅 = 𝐾2 ≥ 1, we get 

 

 max|𝑧|=𝐾2|𝑃(𝑠)(𝑧)| ≤ 𝐾2 max|𝑧|=1|𝑃(𝑠)(𝐾2𝑧)| − (𝐾2 − 1)|𝑃(𝑠)(0)| .     (3.13) 

 
On combining inequality (3.12) and (3.13), we get 

 𝐾𝑛−2𝑠 max|𝑧|=1|𝑄(𝑠)| ≤ 𝐾2 max|𝑧|=1|𝑃(𝑠)| − (𝐾2 − 1)|𝑃(𝑠)(0)|, 
 

from which inequality (3.5) follows. 

 

Lemma 4 If  𝑃(𝑧) = ∑ 𝑐𝑗𝑧𝑗𝑛𝑗=1  is a polynomial of degree n having no zero in the disk |𝑧| <𝐾, 𝐾 ≤ 1 , then for 1 ≤ 𝒔 < 𝑛 , 
 

 𝐾𝑛 max|𝑧|=1|𝑃(𝑠)(𝑧)| ≤ max|𝑧|=1 𝑄(𝑠)(𝑧) − (1 − 𝐾4)|𝑐𝑛−𝑠|     𝑓𝑜𝑟   𝑛 − 𝑠 ≥ 2, (3.14) 

 

and 

 

 𝐾𝑛 max|𝑧|=1|𝑃(𝑠)(𝑧)| ≤ max|𝑧|=1 𝑄(𝑠)(𝑧) − (1 − 𝐾2)|𝑐𝑛−𝑠|     𝑓𝑜𝑟   𝑛 − 𝑠 = 1, (3.15) 

 

 

where 𝑄(𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
. 

 

Proof of lemma 4 Since 𝑃(𝑧) = ∑ 𝑐𝑗𝑧𝑗𝑛𝑗=1   has no zero in |𝑧| < 𝐾, 𝐾 ≤ 1, then the polynomial 𝑄(𝑧) = 𝑧𝑛𝑃(1 �̅�⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅
  has all its zeros in |𝑧| ≤ 1𝐾 , 1𝐾 ≥ 1. 

For the case 𝒏 − 𝒔 ≥ 𝟐. 

Applying (3.4) of Lemma 3 to the polynomial Q(z), we get 
 max|𝑧|=1|𝑃(𝑠)(𝑧)| ≤ (1𝐾)𝑛 max|𝑧|=1|𝑄(𝑠)(𝑧)| − {(1𝐾)𝑛 − (1𝐾)𝑛−4} |𝑐𝑛−𝑠| , 
 
from which inequality (3.14) follows. 

For the case 𝒏 − 𝒔 = 𝟏.  Applying inequality (3.5) of Lemma 3 to the polynomial Q(z), we 
get max|𝑧|=1|𝑃(𝑠)(𝑧)| ≤ (1𝐾)𝑛 max|𝑧|=1|𝑄(𝑠)(𝑧)| − {(1𝐾)𝑛 − (1𝐾)𝑛−2} |𝑐𝑛−𝑠|, 
 
from which follows the inequality (3.15). 
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4. Proof of the theorems 
As Theorem 2 is a generalization of Theorem 1, therefore here we give the proof of Theorem 2 

only. 

Proof of Theorem 2. Since by hypothesis, |𝑃(𝑠)(𝑧)| and |𝑄(𝑠)(𝑧)| attain the maximum at the 

same point on unit circle, we choose a point 𝑧0 on the unit circle such that |𝑃(𝑠)(𝑧0)| =max|𝑧|=1|𝑃(𝑠)(𝑧)| and |𝑄(𝑠)(𝑧0)| = max|𝑧|=1|𝑄(𝑠)(𝑧)|,  then by inequality (3.1) of Lemma 1, 

we have 
 |𝑃(𝑠)(𝑧0)| + |𝑄(𝑠)(𝑧0)| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1) max|𝑧|=1|𝑃(𝑧)| , 
i.e. 

 

 max|𝑧|=1|𝑃(𝑠)(𝑧)| + max|𝑧|=1|𝑄(𝑠)(𝑧)| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1) max|𝑧|=1|𝑃(𝑧)| . (4.1) 

 

 

Case n-s>2. 

On combining inequality (3.14) of Lemma 4  with (4.1), we get 

  max|𝑧|=1|𝑃(𝑠)(𝑧)| + 𝐾𝑛 max|𝑧|=1|𝑃(𝑠)(𝑧)| + (1 − 𝐾4)|𝑐𝑛−𝑠| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1) max|𝑧|=1|𝑃(𝑧)| , 
 

which is equivalent to 
 max|𝑧|=1|𝑃(𝑠)(𝑧)| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1)1 + 𝐾𝑛 max|𝑧|=1|𝑃(𝑧)| − {1 − 𝐾41 + 𝐾𝑛} |𝑐𝑛−𝑠| 
 

and the inequality (2.7) follows. 

 

Case n-s=1. In this case, combining inequality (3.15) of Lemma 4 with inequality (4.1), we 
get 

 max|𝑧|=1|𝑃(𝑠)(𝑧)| + 𝐾𝑛 max|𝑧|=1|𝑃(𝑠)(𝑧)| + (1 − 𝐾2)|𝑐𝑛−𝑠| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1) max|𝑧|=1|𝑃(𝑧)| , 
 

which gives 
 max|𝑧|=1|𝑃(𝑠)(𝑧)| ≤ 𝑛(𝑛 − 1) … (𝑛 − 𝑠 + 1)1 + 𝐾𝑛 max|𝑧|=1|𝑃(𝑧)| − {1 − 𝐾21 + 𝐾𝑛} |𝑐𝑛−𝑠| 
 
and this follows the inequality (2.8). 
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