Heart Disease Prediction Using Machine Learning and Data Mining Techniques: Application of Framingham Dataset
Main Article Content
Abstract
Introduction:Heart problems have gained a lot of interest in medical research because of their impact on human health where early diagnosis is critical to delaying the development of heart disease, the world's leading cause of death. thus, it is much needed to predict the possibility of occurrence of heart disease based on their attributes. Objective:This research aims into a variety of machine learning classification algorithms for predicting heart disease. Methods:The 10-fold cross-validation resampling is used to validate the prediction model. Aim and the prediction scores of each algorithm are evaluated with performance metrics such as prediction accuracy, confusion matrix, F1-Meuser, and
suggested geometric mean. Results:It was revealed that classifying the HD dataset using different classification algorithms produces extremely promising results, with a classification accuracy of 83.95, 84.5, 84.82, 84.89, and 85.05 % for the KNN, SVM, DT, LR, and RF algorithms, respectively. The RF algorithm successfully predicts 85.05 % (true positive rate) of the deceased cases correctly.
Conclusion:This study suggests that the RF method predicts Framingham possibilities better than other algorithms for the smaller (4240 records) dataset, based on the findings of other machine learning classification techniques on the Framingham dataset.
Downloads
Metrics
Article Details
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.